/* * Remote Laboratory Oscilloscope Part * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * (c) 2012-2019 Timothy Pearson * Raptor Engineering * http://www.raptorengineeringinc.com */ #include "define.h" #include "part.h" #ifdef HAVE_FFTS #define ENABLE_FFT 1 #endif // HAVE_FFTS #include //::createAboutData() #include #include #include //::start() #include #include #include #include #include #include //encodeName() #include #include #include #include #include #include #include #include #include #include #include #include //access() #include #include #ifdef ENABLE_FFT #include #endif // ENABLE_FFT #include "tracewidget.h" #include "floatspinbox.h" #include "layout.h" #define NETWORK_COMM_TIMEOUT_MS 15000 /* exception handling */ struct exit_exception { int c; exit_exception(int c):c(c) { } }; enum connectionStates { ScopeState_InitialRequest = 0, ScopeState_ResetRequest = 2, ScopeState_HorizontalDivCountRequest = 4, ScopeState_VerticalDivCountRequest = 6, ScopeState_PermittedSecondsDivRequest = 8, ScopeState_ChannelCountRequest = 10, ScopeState_ChannelActiveStateRequest = 12, ScopeState_TraceSampleCountRequest = 14, ScopeState_TracePermittedVoltsDivRequest = 16, ScopeState_TraceVoltsDivRequest = 18, ScopeState_TraceSecondsDivRequest = 20, ScopeState_HorizontalTimebaseRequest = 22, ScopeState_TriggerChannelRequest = 24, ScopeState_TriggerLevelRequest = 26, ScopeState_RunningRequest = 28, ScopeState_TraceRequest = 50, ScopeState_ChannelActiveStateUpdate = 100, ScopeState_TraceVoltsDivUpdate = 102, ScopeState_TriggerChannelUpdate = 104, ScopeState_TriggerLevelUpdate = 106, ScopeState_HorizontalTimebaseUpdate = 108, ScopeState_RunningUpdate = 110, ScopeState_ExternalCommandRequest = 255 }; #define ScopeState_ReloadSettings ScopeState_ChannelActiveStateRequest namespace RemoteLab { typedef KParts::GenericFactory Factory; #define CLIENT_LIBRARY "libremotelab_scope" K_EXPORT_COMPONENT_FACTORY( libremotelab_scope, RemoteLab::Factory ) TraceControlWidget::TraceControlWidget(TQWidget *parent, const char *name) : TQWidget(parent, name) { TQGridLayout *topGrid = new TQGridLayout(this); m_groupBox = new TQGroupBox(this); m_groupBox->setColumnLayout(0, TQt::Vertical); topGrid->addMultiCellWidget(m_groupBox, 0, 0, 0, 0); m_groupBox->setTitle(i18n("Unknown Channel")); m_primaryLayout = new TQGridLayout(m_groupBox->layout(), 1, 1, KDialog::spacingHint()); m_channelEnabledCheckBox = new TQCheckBox(m_groupBox); connect(m_channelEnabledCheckBox, SIGNAL(clicked()), this, SLOT(enableClicked())); m_channelEnabledCheckBox->setText(i18n("Enable")); m_primaryLayout->addMultiCellWidget(m_channelEnabledCheckBox, 0, 0, 0, 0); m_voltsDivComboBox = new TQComboBox(m_groupBox); connect(m_voltsDivComboBox, SIGNAL(activated(int)), this, SLOT(vdivChanged(int))); m_primaryLayout->addMultiCellWidget(m_voltsDivComboBox, 0, 0, 1, 1); TQLabel* label = new TQLabel(m_groupBox); label->setText(i18n("V/div")); m_primaryLayout->addMultiCellWidget(label, 0, 0, 2, 2); m_setTriggerChannelButton = new TQPushButton(m_groupBox); m_setTriggerChannelButton->setText(i18n("TRIG")); connect(m_setTriggerChannelButton, SIGNAL(clicked()), this, SLOT(triggerRequested())); m_primaryLayout->addMultiCellWidget(m_setTriggerChannelButton, 0, 0, 3, 3); } TraceControlWidget::~TraceControlWidget() { // } void TraceControlWidget::setVoltsPerDivList(TQDoubleList list) { m_voltsDivList = list; // Update drop down list double prevValue = m_voltsDivComboBox->currentText().toDouble(); m_voltsDivComboBox->clear(); TQDoubleList::iterator it; int i = 0; for (it = m_voltsDivList.begin(); it != m_voltsDivList.end(); ++it) { m_voltsDivComboBox->insertItem(TQString("%1").arg(*it), i); if (prevValue == (*it)) { m_voltsDivComboBox->setCurrentItem(i); } i++; } } void TraceControlWidget::setSelectedVoltsPerDiv(double vdiv) { int i = 0; for (i=0;icount();i++) { if (m_voltsDivComboBox->text(i).toDouble() == vdiv) { m_voltsDivComboBox->setCurrentItem(i); } } } void TraceControlWidget::setTraceEnabled(bool enabled) { m_channelEnabledCheckBox->setChecked(enabled); m_voltsDivComboBox->setEnabled(enabled); } void TraceControlWidget::setTraceName(TQString name) { m_groupBox->setTitle(name); } void TraceControlWidget::setTriggerChannel(bool isTrigger) { // m_setTriggerChannelButton->setEnabled(!isTrigger); m_setTriggerChannelButton->setDown(isTrigger); } void TraceControlWidget::enableClicked() { bool enabled = m_channelEnabledCheckBox->isOn(); m_voltsDivComboBox->setEnabled(enabled); emit(enableChanged(enabled)); } void TraceControlWidget::vdivChanged(int index) { Q_UNUSED(index) double value = m_voltsDivComboBox->currentText().toDouble(); emit(voltsPerDivChanged(value)); } void TraceControlWidget::triggerRequested() { emit(triggerChannelChangeRequested()); } MathTraceControlWidget::MathTraceControlWidget(TQWidget *parent, const char *name) : TQWidget(parent, name) { TQGridLayout *topGrid = new TQGridLayout(this); m_groupBox = new TQGroupBox(this); m_groupBox->setColumnLayout(0, TQt::Vertical); topGrid->addMultiCellWidget(m_groupBox, 0, 0, 0, 0); m_groupBox->setTitle(i18n("Unknown Math Channel")); m_primaryLayout = new TQGridLayout(m_groupBox->layout(), 1, 1, KDialog::spacingHint()); m_channelEnabledCheckBox = new TQCheckBox(m_groupBox); connect(m_channelEnabledCheckBox, SIGNAL(clicked()), this, SLOT(enableClicked())); m_channelEnabledCheckBox->setText(i18n("Enable")); m_primaryLayout->addMultiCellWidget(m_channelEnabledCheckBox, 0, 0, 0, 0); m_voltsDivComboBox = new TQComboBox(m_groupBox); connect(m_voltsDivComboBox, SIGNAL(activated(int)), this, SLOT(vdivChanged(int))); m_primaryLayout->addMultiCellWidget(m_voltsDivComboBox, 0, 0, 1, 1); m_verticalUnitsLabel = new TQLabel(m_groupBox); m_verticalUnitsLabel->setText(i18n("V/div")); m_primaryLayout->addMultiCellWidget(m_verticalUnitsLabel, 0, 0, 2, 2); m_operandFirstComboBox = new TQComboBox(m_groupBox); connect(m_operandFirstComboBox, SIGNAL(activated(int)), this, SLOT(operandFirstChanged(int))); m_primaryLayout->addMultiCellWidget(m_operandFirstComboBox, 1, 1, 0, 0); m_operandSecondComboBox = new TQComboBox(m_groupBox); connect(m_operandSecondComboBox, SIGNAL(activated(int)), this, SLOT(operandSecondChanged(int))); m_primaryLayout->addMultiCellWidget(m_operandSecondComboBox, 1, 1, 2, 2); m_operatorComboBox = new TQComboBox(m_groupBox); connect(m_operatorComboBox, SIGNAL(activated(int)), this, SLOT(operatorChanged(int))); m_primaryLayout->addMultiCellWidget(m_operatorComboBox, 1, 1, 1, 1); } MathTraceControlWidget::~MathTraceControlWidget() { // } void MathTraceControlWidget::setVoltsPerDivList(TQDoubleList list) { m_voltsDivList = list; // Update drop down list double prevValue = m_voltsDivComboBox->currentText().toDouble(); m_voltsDivComboBox->clear(); TQDoubleList::iterator it; int i = 0; for (it = m_voltsDivList.begin(); it != m_voltsDivList.end(); ++it) { m_voltsDivComboBox->insertItem(TQString("%1").arg(*it), i); if (prevValue == (*it)) { m_voltsDivComboBox->setCurrentItem(i); } i++; } } void MathTraceControlWidget::setSelectedVoltsPerDiv(double vdiv) { int i = 0; for (i=0;icount();i++) { if (m_voltsDivComboBox->text(i).toDouble() == vdiv) { m_voltsDivComboBox->setCurrentItem(i); } } } void MathTraceControlWidget::setFirstMathOperandList(TQInt16List list) { m_firstMathOperandList = list; // Update drop down list int prevValue = (m_operandFirstComboBox->currentText().replace("Ch", "")).toInt(); m_operandFirstComboBox->clear(); TQInt16List::iterator it; int i = 0; for (it = m_firstMathOperandList.begin(); it != m_firstMathOperandList.end(); ++it) { m_operandFirstComboBox->insertItem(TQString("Ch%1").arg(*it), i); if (prevValue == (*it)) { m_operandFirstComboBox->setCurrentItem(i); } i++; } } void MathTraceControlWidget::setSelectedFirstMathOperand(int channel) { int i = 0; for (i=0;icount();i++) { if ((m_operandFirstComboBox->text(i).replace("Ch", "")).toInt() == channel) { m_operandFirstComboBox->setCurrentItem(i); } } } void MathTraceControlWidget::setSecondMathOperandList(TQInt16List list) { m_secondMathOperandList = list; // Update drop down list int prevValue = (m_operandSecondComboBox->currentText().replace("Ch", "")).toInt(); m_operandSecondComboBox->clear(); TQInt16List::iterator it; int i = 0; for (it = m_secondMathOperandList.begin(); it != m_secondMathOperandList.end(); ++it) { m_operandSecondComboBox->insertItem(TQString("Ch%1").arg(*it), i); if (prevValue == (*it)) { m_operandSecondComboBox->setCurrentItem(i); } i++; } } void MathTraceControlWidget::setSelectedSecondMathOperand(int channel) { int i = 0; for (i=0;icount();i++) { if ((m_operandSecondComboBox->text(i).replace("Ch", "")).toInt() == channel) { m_operandSecondComboBox->setCurrentItem(i); } } } void MathTraceControlWidget::setMathOperatorList(MathOperatorList list) { m_mathOperatorList = list; // Update drop down list TQString prevValue = m_operatorComboBox->currentText(); m_operatorComboBox->clear(); MathOperatorList::iterator it; int i = 0; for (it = m_mathOperatorList.begin(); it != m_mathOperatorList.end(); ++it) { m_operatorComboBox->insertItem((*it).first, i); if (prevValue == (*it).first) { m_operatorComboBox->setCurrentItem(i); } i++; } } void MathTraceControlWidget::setSelectedMathOperator(TQString op) { int i = 0; for (i=0;icount();i++) { if (m_operatorComboBox->text(i) == op) { m_operatorComboBox->setCurrentItem(i); } } updateMathOperatorOperandVisibility(); } void MathTraceControlWidget::setTraceEnabled(bool enabled) { m_channelEnabledCheckBox->setChecked(enabled); m_voltsDivComboBox->setEnabled(enabled); m_operandFirstComboBox->setEnabled(enabled); m_operandSecondComboBox->setEnabled(enabled); m_operatorComboBox->setEnabled(enabled); } void MathTraceControlWidget::setTraceName(TQString name) { m_groupBox->setTitle(name); } void MathTraceControlWidget::setVerticalUnits(TQString units) { m_verticalUnitsLabel->setText(i18n("%1/div").arg(units)); } void MathTraceControlWidget::enableClicked() { bool enabled = m_channelEnabledCheckBox->isOn(); m_voltsDivComboBox->setEnabled(enabled); emit(enableChanged(enabled)); } void MathTraceControlWidget::vdivChanged(int index) { Q_UNUSED(index) double value = m_voltsDivComboBox->currentText().toDouble(); emit(voltsPerDivChanged(value)); } void MathTraceControlWidget::operandFirstChanged(int index) { Q_UNUSED(index) double value = (m_operandFirstComboBox->currentText().replace("Ch", "")).toInt(); emit(firstMathOperandChanged(value)); } void MathTraceControlWidget::operandSecondChanged(int index) { Q_UNUSED(index) double value = (m_operandSecondComboBox->currentText().replace("Ch", "")).toInt(); emit(secondMathOperandChanged(value)); } void MathTraceControlWidget::operatorChanged(int index) { Q_UNUSED(index) updateMathOperatorOperandVisibility(); emit(mathOperatorChanged(m_operatorComboBox->currentText())); } void MathTraceControlWidget::updateMathOperatorOperandVisibility() { TQString value = m_operatorComboBox->currentText(); MathOperatorList::iterator it; for (it = m_mathOperatorList.begin(); it != m_mathOperatorList.end(); ++it) { if (value == (*it).first) { if ((*it).second < 2) { m_operandSecondComboBox->hide(); } else { m_operandSecondComboBox->show(); } } } } TimebaseControlWidget::TimebaseControlWidget(TQWidget *parent, const char *name) : TQWidget(parent, name) { TQGridLayout *topGrid = new TQGridLayout(this); m_groupBox = new TQGroupBox(this); m_groupBox->setColumnLayout(0, TQt::Vertical); topGrid->addMultiCellWidget(m_groupBox, 0, 0, 0, 0); m_groupBox->setTitle(i18n("Timebase")); m_primaryLayout = new TQGridLayout(m_groupBox->layout(), 1, 1, KDialog::spacingHint()); m_secondsDivComboBox = new TQComboBox(m_groupBox); connect(m_secondsDivComboBox, SIGNAL(activated(int)), this, SLOT(sdivChanged(int))); m_primaryLayout->addMultiCellWidget(m_secondsDivComboBox, 0, 0, 0, 0); TQLabel* label = new TQLabel(m_groupBox); label->setText(i18n("/div")); m_primaryLayout->addMultiCellWidget(label, 0, 0, 1, 1); } TimebaseControlWidget::~TimebaseControlWidget() { // } void TimebaseControlWidget::setSecondsPerDivList(TQDoubleList list) { m_secondsDivList = list; // Update drop down list double prevValue = m_secondsDivComboBox->currentText().toDouble(); m_secondsDivComboBox->clear(); TQDoubleList::iterator it; int i = 0; for (it = m_secondsDivList.begin(); it != m_secondsDivList.end(); ++it) { m_secondsDivComboBox->insertItem(TQString("%1").arg(TraceWidget::prettyFormat(*it, *it, "s", 3)), i); if (prevValue == (*it)) { m_secondsDivComboBox->setCurrentItem(i); } i++; } } void TimebaseControlWidget::setSelectedSecondsPerDiv(double sdiv) { int i = 0; for (i=0;icount();i++) { if (m_secondsDivComboBox->text(i) == TraceWidget::prettyFormat(sdiv, sdiv, "s", 3)) { m_secondsDivComboBox->setCurrentItem(i); } } } void TimebaseControlWidget::sdivChanged(int index) { Q_UNUSED(index) double value = m_secondsDivList[m_secondsDivComboBox->currentItem()]; emit(secondsPerDivChanged(value)); } ScopePart::ScopePart( TQWidget *parentWidget, const char *widgetName, TQObject *parent, const char *name, const TQStringList& ) : RemoteInstrumentPart( parent, name ), m_traceWidget(0), m_commHandlerState(-1), m_commHandlerMode(0), m_commHandlerCommandState(0), m_connectionActiveAndValid(false), m_tickerState(0), m_triggerChannel(-1), m_running(false), m_triggerLevel(0), m_settingsChanged(false), m_base(0), m_stopTraceUpdate(false) { // Initialize important base class variables m_clientLibraryName = CLIENT_LIBRARY; // Initialize mutex m_instrumentMutex = new TQMutex(false); // Initialize kpart setInstance(Factory::instance()); setWidget(new TQVBox(parentWidget, widgetName)); // Create timers m_forcedUpdateTimer = new TQTimer(this); connect(m_forcedUpdateTimer, SIGNAL(timeout()), this, SLOT(mainEventLoop())); m_updateTimeoutTimer = new TQTimer(this); connect(m_updateTimeoutTimer, SIGNAL(timeout()), this, SLOT(mainEventLoop())); // Initialize data m_hdivs = 0; m_vdivs = 0; m_maxNumberOfTraces = 0; m_maxNumberOfMathTraces = 1; m_availableMathOperators.append(MathOperator("+", 2)); m_availableMathOperators.append(MathOperator("-", 2)); m_availableMathOperators.append(MathOperator("*", 2)); m_availableMathOperators.append(MathOperator("/", 2)); m_availableMathOperators.append(MathOperator("Average", 1)); m_availableMathOperators.append(MathOperator("Integral", 1)); m_availableMathOperators.append(MathOperator("Derivative", 1)); #ifdef ENABLE_FFT m_availableMathOperators.append(MathOperator("FFT", 1)); #endif // ENABLE_FFT for (int traceno=0; traceno<=MAXTRACES; traceno++) { m_samplesInTrace[traceno] = 0; m_channelActive[traceno] = false; m_traceAllowedVoltsDiv[traceno].clear(); m_voltsDiv[traceno] = 0; m_secsDiv[traceno] = 0; m_traceControlWidgetList[traceno] = NULL; m_voltsDivSet[traceno] = false; m_channelActiveSet[traceno] = false; } for (int traceno=0; traceno<=MAXMATHTRACES; traceno++) { m_samplesInMathTrace[traceno] = 0; m_mathChannelActive[traceno] = false; m_mathTraceAllowedVoltsDiv[traceno].clear(); m_mathVoltsDiv[traceno] = 0; m_mathSecsDiv[traceno] = 0; m_mathFirstOperand[traceno] = 0; m_mathSecondOperand[traceno] = 0; m_mathOperator[traceno] = TQString::null; m_mathHorizontalUnits[traceno] = "s"; m_mathVerticalUnits[traceno] = "V"; m_mathTraceControlWidgetList[traceno] = NULL; } m_triggerLevelSet = false; m_triggerChannelSet = false; m_horizontalTimebaseSet = false; m_runningSet = false; // Create widgets m_base = new ScopeBase(widget()); m_traceControlWidgetGrid = new TQGridLayout(m_base->traceControlLayoutWidget); m_mathTraceControlWidgetGrid = new TQGridLayout(m_base->mathTraceControlLayoutWidget); m_timebaseControlWidgetGrid = new TQGridLayout(m_base->timebaseControlLayoutWidget); m_timebaseControlWidget = new TimebaseControlWidget(m_base->timebaseControlLayoutWidget); connect(m_timebaseControlWidget, SIGNAL(secondsPerDivChanged(double)), this, SLOT(traceControlSDivChanged(double))); m_timebaseControlWidgetGrid->addMultiCellWidget(m_timebaseControlWidget, 0, 0, 0, 0); m_traceWidget = m_base->traceScrollWidget->traceWidget(); connect(m_traceWidget, SIGNAL(cursorDragged(uint, double)), this, SLOT(cursorLevelChanged(uint, double))); m_base->traceScrollWidget->setSizePolicy(TQSizePolicy(TQSizePolicy::MinimumExpanding, TQSizePolicy::MinimumExpanding)); m_base->traceScrollWidget->setResizePolicy(TQScrollView::AutoOneFit); m_base->traceScrollWidget->setHScrollBarMode(TQScrollView::AlwaysOff); m_base->traceScrollWidget->setVScrollBarMode(TQScrollView::AlwaysOff); m_traceWidget->setNumberOfCursors(5); m_traceWidget->setZoomCursorStartIndex(1); m_traceWidget->setCursorColor(0, TQColor(64, 255, 255)); m_traceWidget->setCursorHighlightColor(0, TQColor(192, 255, 255)); m_traceWidget->setCursorOrientation(0, TQt::Horizontal); m_traceWidget->setCursorOrientation(1, TQt::Horizontal); m_traceWidget->setCursorOrientation(2, TQt::Horizontal); m_traceWidget->setCursorOrientation(3, TQt::Vertical); m_traceWidget->setCursorOrientation(4, TQt::Vertical); m_traceWidget->setCursorEnabled(0, false); m_traceWidget->setCursorEnabled(1, true); m_traceWidget->setCursorEnabled(2, true); m_traceWidget->setCursorEnabled(3, true); m_traceWidget->setCursorEnabled(4, true); m_traceWidget->setCursorName(0, "Trigger"); m_traceWidget->setCursorName(1, "Cursor H1"); m_traceWidget->setCursorName(2, "Cursor H2"); m_traceWidget->setCursorName(3, "Cursor V1"); m_traceWidget->setCursorName(4, "Cursor V2"); m_traceWidget->setCursorPosition(0, 40); m_traceWidget->setCursorPosition(1, 25); m_traceWidget->setCursorPosition(2, 75); m_traceWidget->setCursorPosition(3, 25); m_traceWidget->setCursorPosition(4, 75); TraceNumberList activeTraces; for (uint trace=0; tracesetCursorActiveTraceList(1, activeTraces); m_traceWidget->setCursorActiveTraceList(2, activeTraces); m_traceWidget->setCursorActiveTraceList(3, activeTraces); m_traceWidget->setCursorActiveTraceList(4, activeTraces); m_traceWidget->setZoomBoxEnabled(true); m_base->traceZoomWidget->setHorizontalRangeModeAbsolute(false); m_base->traceZoomWidget->setSizePolicy(TQSizePolicy(TQSizePolicy::MinimumExpanding, TQSizePolicy::MinimumExpanding)); connect(m_traceWidget, SIGNAL(zoomBoxChanged(const TQRectF&)), this, SLOT(updateZoomWidgetLimits(const TQRectF&))); connect(m_traceWidget, SIGNAL(offsetChanged(uint, double)), m_base->traceZoomWidget, SLOT(setTraceOffset(uint, double))); connect(m_base->acqStart, SIGNAL(clicked()), this, SLOT(startDAQ())); connect(m_base->acqStop, SIGNAL(clicked()), this, SLOT(stopDAQ())); connect(m_base->runControlStartButton, SIGNAL(clicked()), this, SLOT(startScope())); connect(m_base->runControlStopButton, SIGNAL(clicked()), this, SLOT(stopScope())); connect(m_base->waveformSave, SIGNAL(clicked()), this, SLOT(saveWaveforms())); connect(m_base->waveformRecall, SIGNAL(clicked()), this, SLOT(recallWaveforms())); TQTimer::singleShot(0, this, TQT_SLOT(postInit())); } ScopePart::~ScopePart() { if (m_instrumentMutex->locked()) { printf("[WARNING] Exiting when data transfer still in progress!\n\r"); fflush(stdout); } disconnectFromServer(); delete m_instrumentMutex; } void ScopePart::postInit() { setUsingFixedSize(false); } bool ScopePart::openURL(const KURL &url) { int ret; m_connectionActiveAndValid = false; ret = connectToServer(url.url()); processLockouts(); return (ret != 0); } bool ScopePart::closeURL() { disconnectFromServer(); m_url = KURL(); return true; } void ScopePart::processLockouts() { // Largest area if (m_connectionActiveAndValid) { if ((m_commHandlerMode < 2) && (m_commHandlerState < 2)) { m_base->setEnabled(false); } else { m_base->setEnabled(true); } } else { m_base->setEnabled(false); } // Middle area if (((m_commHandlerMode < 2) && (m_commHandlerState < 50)) || (m_stopTraceUpdate)) { m_base->groupOscilloscopeCaptureControls->setEnabled(false); } else { m_base->groupOscilloscopeCaptureControls->setEnabled(true); } // Least area if (m_stopTraceUpdate) { m_base->acqStop->setEnabled(false); m_base->acqStart->setEnabled(true); m_base->waveformSave->setEnabled(true); m_base->waveformRecall->setEnabled(true); } else { m_base->acqStop->setEnabled(true); m_base->acqStart->setEnabled(false); m_base->waveformSave->setEnabled(false); m_base->waveformRecall->setEnabled(false); } if (m_running) { m_base->runControlStartButton->setEnabled(false); m_base->runControlStopButton->setEnabled(true); } else { m_base->runControlStartButton->setEnabled(true); m_base->runControlStopButton->setEnabled(false); } } void ScopePart::disconnectFromServerCallback() { m_forcedUpdateTimer->stop(); m_updateTimeoutTimer->stop(); m_connectionActiveAndValid = false; } void ScopePart::connectionFinishedCallback() { connect(m_socket, SIGNAL(readyRead()), m_socket, SLOT(processPendingData())); m_socket->processPendingData(); connect(m_socket, SIGNAL(newDataReceived()), this, SLOT(mainEventLoop())); m_tickerState = 0; m_commHandlerState = 0; m_commHandlerMode = 0; m_socket->setDataTimeout(NETWORK_COMM_TIMEOUT_MS); m_updateTimeoutTimer->start(NETWORK_COMM_TIMEOUT_MS, TRUE); processLockouts(); mainEventLoop(); return; } void ScopePart::connectionStatusChangedCallback() { processLockouts(); } void ScopePart::setTickerMessage(TQString message) { int i; bool updatesPending = false; for (i=0; i<=MAXTRACES;i++) { if (m_channelActiveSet[i]) updatesPending = true; if (m_voltsDivSet[i]) updatesPending = true; if (m_triggerLevelSet) updatesPending = true; if (m_triggerChannelSet) updatesPending = true; if (m_horizontalTimebaseSet) updatesPending = true; if (m_runningSet) updatesPending = true; } m_connectionActiveAndValid = true; TQString tickerChar; switch (m_tickerState) { case 0: tickerChar = "-"; break; case 1: tickerChar = "\\"; break; case 2: tickerChar = "|"; break; case 3: tickerChar = "/"; break; } if (updatesPending) { setStatusMessage(i18n("Updates pending") + ", " + message + TQString("... %1").arg(tickerChar)); } else { setStatusMessage(message + TQString("... %1").arg(tickerChar)); } m_tickerState++; if (m_tickerState > 3) { m_tickerState = 0; } } #define UPDATEDISPLAY_TIMEOUT m_connectionActiveAndValid = false; \ m_tickerState = 0; \ m_commHandlerState = ScopeState_ResetRequest; \ m_commHandlerMode = 0; \ m_socket->clearIncomingData(); \ setStatusMessage(i18n("Server ping timeout. Please verify the status of your network connection.")); \ m_updateTimeoutTimer->start(NETWORK_COMM_TIMEOUT_MS, TRUE); \ m_instrumentMutex->unlock(); \ return; #define COMMUNICATIONS_FAILED m_connectionActiveAndValid = false; \ m_tickerState = 0; \ m_commHandlerState = ScopeState_ResetRequest; \ m_commHandlerMode = 0; \ m_socket->clearIncomingData(); \ setStatusMessage(i18n("Instrument communication failure. Please verify the status of your network connection.")); \ m_updateTimeoutTimer->start(NETWORK_COMM_TIMEOUT_MS, TRUE); \ m_instrumentMutex->unlock(); \ return; #define SET_WATCHDOG_TIMER if (!m_updateTimeoutTimer->isActive()) m_updateTimeoutTimer->start(NETWORK_COMM_TIMEOUT_MS, TRUE); #define PAT_WATCHDOG_TIMER m_updateTimeoutTimer->stop(); m_updateTimeoutTimer->start(NETWORK_COMM_TIMEOUT_MS, TRUE); #define SET_NEXT_STATE(x) if (m_commHandlerMode == 0) { \ m_commHandlerState = x; \ } \ else { \ m_commHandlerState = ScopeState_ExternalCommandRequest; \ EXEC_NEXT_STATE_IMMEDIATELY \ } #define SET_NEXT_STATE_DATA_WAITING(x) m_commHandlerState = x; #define EXEC_NEXT_STATE_IMMEDIATELY m_forcedUpdateTimer->start(0, TRUE); int getNextActiveChannel(int current, bool* activity, int maxtracenumber) { int ret = -1; for (int i=current+1; i<=maxtracenumber; i++) { if (activity[i]) { ret = i; break; } } return ret; } void ScopePart::mainEventLoop() { TQDataStream ds(m_socket); ds.setPrintableData(true); if (!m_instrumentMutex->tryLock()) { EXEC_NEXT_STATE_IMMEDIATELY return; } if (m_socket) { if ((m_commHandlerMode == 0) || (m_commHandlerMode == 1)) { if (m_commHandlerState == ScopeState_InitialRequest) { // Request scope access ds << TQString("OSCILLOSCOPE"); m_socket->writeEndOfFrame(); m_commHandlerState = ScopeState_InitialRequest+1; EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_InitialRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Connected")); // Get command status TQString result; ds >> result; m_socket->clearFrameTail(); if (result == "ACK") { SET_NEXT_STATE(ScopeState_ResetRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_ResetRequest) { // Reset scope ds << TQString("RESET"); m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_ResetRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_ResetRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Reset complete]")); // Get command status TQString result; ds >> result; m_socket->clearFrameTail(); if (result == "ACK") { SET_NEXT_STATE(ScopeState_HorizontalDivCountRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_HorizontalDivCountRequest) { // Get number of horizontal divisions, step 1 ds << TQString("GETHORIZONTALDIVCOUNT"); m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_HorizontalDivCountRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_HorizontalDivCountRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received horizontal division count]")); // Get number of horizontal divisions, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_hdivs; } m_socket->clearFrameTail(); if (result == "ACK") { SET_NEXT_STATE(ScopeState_VerticalDivCountRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_VerticalDivCountRequest) { // Get number of vertical divisions, step 1 ds << TQString("GETVERTICALDIVCOUNT"); m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_VerticalDivCountRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_VerticalDivCountRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received vertical division count]")); // Get number of vertical divisions, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_vdivs; } m_socket->clearFrameTail(); if (result == "ACK") { SET_NEXT_STATE(ScopeState_PermittedSecondsDivRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_PermittedSecondsDivRequest) { // Get permitted seconds/div settings, step 1 ds << TQString("GETPERMITTEDSDIVS"); m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_PermittedSecondsDivRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_PermittedSecondsDivRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received allowed seconds/div list]")); // Get permitted seconds/div settings, step 2 TQString result; ds >> result; if (result == "ACK") { TQDoubleList list; ds >> list; m_timebaseControlWidget->setSecondsPerDivList(list); } m_socket->clearFrameTail(); if (result == "ACK") { SET_NEXT_STATE(ScopeState_ChannelCountRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_ChannelCountRequest) { // Get number of channels, step 1 ds << TQString("GETNUMBEROFCHANNELS"); m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_ChannelCountRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_ChannelCountRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received number of channels]")); // Get number of channels, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_maxNumberOfTraces; if (m_maxNumberOfTraces > MAXTRACES) { m_maxNumberOfTraces = MAXTRACES; } updateTraceControlWidgets(); } m_socket->clearFrameTail(); if (result == "ACK") { m_currentOpChannel = 1; SET_NEXT_STATE(ScopeState_ChannelActiveStateRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_ChannelActiveStateRequest) { // Get channel status, step 1 ds << TQString("GETCHANNELACTIVE"); ds << m_currentOpChannel; m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_ChannelActiveStateRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_ChannelActiveStateRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received channel %1 activity status]").arg(m_currentOpChannel)); // Get channel status, step 2 TQString result; ds >> result; if (result == "ACK") { TQ_INT16 active; ds >> active; m_channelActive[m_currentOpChannel] = (active != 0); } m_socket->clearFrameTail(); if (result == "ACK") { if (m_currentOpChannel < m_maxNumberOfTraces) { m_currentOpChannel++; SET_NEXT_STATE(ScopeState_ChannelActiveStateRequest) } else { m_currentOpChannel = getNextActiveChannel(0, m_channelActive, m_maxNumberOfTraces); if (m_currentOpChannel > 0) { SET_NEXT_STATE(ScopeState_TraceSampleCountRequest) } else { m_currentOpChannel = 1; SET_NEXT_STATE(ScopeState_ChannelCountRequest) } } EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TraceSampleCountRequest) { // Get number of samples in trace, step 1 ds << TQString("GETTRACESAMPLECOUNT"); ds << m_currentOpChannel; m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_TraceSampleCountRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TraceSampleCountRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received trace sample count for channel %1]").arg(m_currentOpChannel)); // Get number of samples in trace, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_samplesInTrace[m_currentOpChannel]; } m_socket->clearFrameTail(); if (result == "ACK") { m_currentOpChannel = getNextActiveChannel(m_currentOpChannel, m_channelActive, m_maxNumberOfTraces); if (m_currentOpChannel > 0) { SET_NEXT_STATE(ScopeState_TraceSampleCountRequest) } else { m_currentOpChannel = getNextActiveChannel(0, m_channelActive, m_maxNumberOfTraces); SET_NEXT_STATE(ScopeState_TracePermittedVoltsDivRequest) } EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TracePermittedVoltsDivRequest) { // Get permitted volts/div settings, step 1 ds << TQString("GETPERMITTEDVDIVS"); ds << m_currentOpChannel; m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_TracePermittedVoltsDivRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TracePermittedVoltsDivRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received allowed V/div list for channel %1]").arg(m_currentOpChannel)); // Get permitted volts/div settings, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_traceAllowedVoltsDiv[m_currentOpChannel]; if (m_traceControlWidgetList[m_currentOpChannel-1]) { m_traceControlWidgetList[m_currentOpChannel-1]->setVoltsPerDivList(m_traceAllowedVoltsDiv[m_currentOpChannel]); } } m_socket->clearFrameTail(); if (result == "ACK") { if (m_currentOpChannel < m_maxNumberOfTraces) { m_currentOpChannel++; SET_NEXT_STATE(ScopeState_TracePermittedVoltsDivRequest) } else { m_currentOpChannel = getNextActiveChannel(0, m_channelActive, m_maxNumberOfTraces); SET_NEXT_STATE(ScopeState_TraceVoltsDivRequest) } EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TraceVoltsDivRequest) { // Get volts per division, step 1 ds << TQString("GETVOLTSDIV"); ds << m_currentOpChannel; m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_TraceVoltsDivRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TraceVoltsDivRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received volts/div for channel %1]").arg(m_currentOpChannel)); // Get volts per division, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_voltsDiv[m_currentOpChannel]; } m_socket->clearFrameTail(); if (result == "ACK") { m_currentOpChannel = getNextActiveChannel(m_currentOpChannel, m_channelActive, m_maxNumberOfTraces); if (m_currentOpChannel > 0) { SET_NEXT_STATE(ScopeState_TraceVoltsDivRequest) } else { m_currentOpChannel = getNextActiveChannel(0, m_channelActive, m_maxNumberOfTraces); SET_NEXT_STATE(ScopeState_TraceSecondsDivRequest) } EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TraceSecondsDivRequest) { // Get seconds per division, step 1 ds << TQString("GETSECONDSSDIV"); ds << m_currentOpChannel; m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_TraceSecondsDivRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TraceSecondsDivRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received seconds/div for channel %1]").arg(m_currentOpChannel)); // Get seconds per division, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_secsDiv[m_currentOpChannel]; } m_socket->clearFrameTail(); if (result == "ACK") { m_currentOpChannel = getNextActiveChannel(m_currentOpChannel, m_channelActive, m_maxNumberOfTraces); if (m_currentOpChannel > 0) { SET_NEXT_STATE(ScopeState_TraceSecondsDivRequest) } else { SET_NEXT_STATE(ScopeState_HorizontalTimebaseRequest) } EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_HorizontalTimebaseRequest) { // Get horizontal timebase, step 1 ds << TQString("GETHORIZTIMEBASE"); m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_HorizontalTimebaseRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_HorizontalTimebaseRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received horizontal timebase]")); // Get horizontal timebase, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_horizontalTimebase; m_timebaseControlWidget->setSelectedSecondsPerDiv(m_horizontalTimebase); } m_socket->clearFrameTail(); if (result == "ACK") { m_currentOpChannel = 1; SET_NEXT_STATE(ScopeState_TriggerChannelRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TriggerChannelRequest) { // Get trigger channel, step 1 ds << TQString("GETTRIGGERCHANNEL"); ds << m_currentOpChannel; m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_TriggerChannelRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TriggerChannelRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received trigger channel]")); // Get trigger channel, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_triggerChannel; } m_socket->clearFrameTail(); if (result == "ACK") { SET_NEXT_STATE(ScopeState_TriggerLevelRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TriggerLevelRequest) { // Get trigger level, step 1 ds << TQString("GETTRIGGERLEVEL"); ds << m_currentOpChannel; m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_TriggerLevelRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TriggerLevelRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received trigger level]")); // Get trigger level, step 2 TQString result; ds >> result; if (result == "ACK") { ds >> m_triggerLevel; } m_socket->clearFrameTail(); if (result == "ACK") { // Update display widget(s) updateGraticule(); } if (result == "ACK") { SET_NEXT_STATE(ScopeState_RunningRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_RunningRequest) { // Get running, step 1 ds << TQString("GETRUNNING"); ds << m_currentOpChannel; m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_RunningRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_RunningRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Loading [Received run status]")); // Get running, step 2 TQString result; ds >> result; if (result == "ACK") { TQ_INT16 status; ds >> status; m_running = (status != 0); } m_socket->clearFrameTail(); if (result == "ACK") { // Update display widget(s) updateGraticule(); } if (result == "ACK") { m_currentOpChannel = getNextActiveChannel(0, m_channelActive, m_maxNumberOfTraces); SET_NEXT_STATE(ScopeState_TraceRequest) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TraceRequest) { // Get trace, step 1 ds << TQString("GETCHANNELTRACE"); ds << m_currentOpChannel; m_socket->writeEndOfFrame(); SET_NEXT_STATE_DATA_WAITING(ScopeState_TraceRequest+1) EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TraceRequest+1) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Running [Received trace for channel %1]").arg(m_currentOpChannel)); // Get trace, step 2 TQDoubleArray trace; TQDoubleArray positions; TQString result; ds >> result; if (result == "ACK") { ds >> trace; ds >> positions; } m_socket->clearFrameTail(); if (result == "ACK") { // Update display widget(s) m_traceWidget->setSamples(m_currentOpChannel-1, trace); m_traceWidget->setPositions(m_currentOpChannel-1, positions); m_base->traceZoomWidget->setSamples(m_currentOpChannel-1, trace); m_base->traceZoomWidget->setPositions(m_currentOpChannel-1, positions); postProcessTrace(); processMathTraces(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); } if (result == "ACK") { m_currentOpChannel = getNextActiveChannel(m_currentOpChannel, m_channelActive, m_maxNumberOfTraces); if ((m_channelActiveSet[m_currentOpChannel] == false) && (m_voltsDivSet[m_currentOpChannel] == false) && (m_triggerLevelSet == false) && (m_triggerChannelSet == false) && (m_horizontalTimebaseSet == false) && (m_runningSet == false) ) { if (m_currentOpChannel <= 0) { m_currentOpChannel = 1; } SET_NEXT_STATE(ScopeState_TraceRequest) } else { m_currentOpChannel = 1; if (m_traceWidget->userIsInteractingWithCursor()) { // Defer pending updates until user has stopped changing cursor value(s) SET_NEXT_STATE(ScopeState_TraceRequest) } else { SET_NEXT_STATE(ScopeState_ChannelActiveStateUpdate) } } EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_ChannelActiveStateUpdate) { if (m_channelActiveSet[m_currentOpChannel]) { // Set channel active, step 1 ds << TQString("SETCHANNELACTIVE"); ds << m_currentOpChannel; TQ_INT16 active = (m_channelActive[m_currentOpChannel])?1:0; ds << active; m_socket->writeEndOfFrame(); m_channelActiveSet[m_currentOpChannel] = false; SET_NEXT_STATE_DATA_WAITING(ScopeState_ChannelActiveStateUpdate+1) } else { m_currentOpChannel = m_currentOpChannel + 1; if (m_currentOpChannel < m_maxNumberOfTraces) { SET_NEXT_STATE(ScopeState_ChannelActiveStateUpdate) } else { m_currentOpChannel = getNextActiveChannel(0, m_channelActive, m_maxNumberOfTraces); SET_NEXT_STATE(ScopeState_TraceVoltsDivUpdate) } } EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_ChannelActiveStateUpdate+1) { m_settingsChanged = true; // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Updating [Set channel %1 activity status]").arg(m_currentOpChannel)); // Set channel active, step 2 TQString result; ds >> result; m_socket->clearFrameTail(); if (result == "ACK") { m_currentOpChannel = getNextActiveChannel(m_currentOpChannel, m_channelActive, m_maxNumberOfTraces); if (m_currentOpChannel > 0) { SET_NEXT_STATE(ScopeState_ChannelActiveStateUpdate) } else { m_currentOpChannel = m_currentOpChannel + 1; if (m_currentOpChannel < m_maxNumberOfTraces) { SET_NEXT_STATE(ScopeState_ChannelActiveStateUpdate) } else { m_currentOpChannel = getNextActiveChannel(0, m_channelActive, m_maxNumberOfTraces); SET_NEXT_STATE(ScopeState_TraceVoltsDivUpdate) } } EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TraceVoltsDivUpdate) { if (m_voltsDivSet[m_currentOpChannel]) { // Set volts per division, step 1 ds << TQString("SETVOLTSDIV"); ds << m_currentOpChannel; ds << m_voltsDiv[m_currentOpChannel]; m_socket->writeEndOfFrame(); m_voltsDivSet[m_currentOpChannel] = false; SET_NEXT_STATE_DATA_WAITING(ScopeState_TraceVoltsDivUpdate+1) } else { m_currentOpChannel = getNextActiveChannel(m_currentOpChannel, m_channelActive, m_maxNumberOfTraces); if (m_currentOpChannel > 0) { SET_NEXT_STATE(ScopeState_TraceVoltsDivUpdate) } else { SET_NEXT_STATE(ScopeState_TriggerChannelUpdate) } } EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TraceVoltsDivUpdate+1) { m_settingsChanged = true; // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Updating [Set volts/div for channel %1]").arg(m_currentOpChannel)); // Set volts per division, step 2 TQString result; ds >> result; m_socket->clearFrameTail(); if (result == "ACK") { m_currentOpChannel = getNextActiveChannel(m_currentOpChannel, m_channelActive, m_maxNumberOfTraces); if (m_currentOpChannel > 0) { SET_NEXT_STATE(ScopeState_TraceVoltsDivUpdate) } else { SET_NEXT_STATE(ScopeState_TriggerChannelUpdate) } EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TriggerChannelUpdate) { if (m_triggerChannelSet) { // Set trigger channel, step 1 ds << TQString("SETTRIGGERCHANNEL"); ds << m_triggerChannel; m_socket->writeEndOfFrame(); m_triggerChannelSet = false; SET_NEXT_STATE_DATA_WAITING(ScopeState_TriggerChannelUpdate+1) } else { SET_NEXT_STATE(ScopeState_TriggerLevelUpdate) } EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TriggerChannelUpdate+1) { m_settingsChanged = true; // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Updating [Set trigger level]")); // Set trigger channel, step 2 TQString result; ds >> result; m_socket->clearFrameTail(); if (result == "ACK") { SET_NEXT_STATE(ScopeState_TriggerLevelUpdate) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_TriggerLevelUpdate) { if (m_triggerLevelSet) { // Set trigger level, step 1 ds << TQString("SETTRIGGERLEVEL"); ds << m_triggerLevel; m_socket->writeEndOfFrame(); m_triggerLevelSet = false; SET_NEXT_STATE_DATA_WAITING(ScopeState_TriggerLevelUpdate+1) } else { SET_NEXT_STATE(ScopeState_HorizontalTimebaseUpdate) } EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_TriggerLevelUpdate+1) { m_settingsChanged = true; // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Updating [Set trigger level]")); // Set trigger level, step 2 TQString result; ds >> result; m_socket->clearFrameTail(); if (result == "ACK") { SET_NEXT_STATE(ScopeState_HorizontalTimebaseUpdate) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_HorizontalTimebaseUpdate) { if (m_horizontalTimebaseSet) { // Set horizontal timebase, step 1 ds << TQString("SETHORIZTIMEBASE"); ds << m_horizontalTimebase; m_socket->writeEndOfFrame(); m_horizontalTimebaseSet = false; SET_NEXT_STATE_DATA_WAITING(ScopeState_HorizontalTimebaseUpdate+1) } else { SET_NEXT_STATE(ScopeState_RunningUpdate) } EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_HorizontalTimebaseUpdate+1) { m_settingsChanged = true; // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Updating [Set horizontal timebase]")); // Set horizontal timebase, step 2 TQString result; ds >> result; m_socket->clearFrameTail(); if (result == "ACK") { SET_NEXT_STATE(ScopeState_RunningUpdate) EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_RunningUpdate) { if (m_runningSet) { // Set running, step 1 ds << TQString("SETRUNNING"); TQ_INT16 running = (m_running)?1:0; ds << running; m_socket->writeEndOfFrame(); m_runningSet = false; SET_NEXT_STATE_DATA_WAITING(ScopeState_RunningUpdate+1) } else { m_currentOpChannel = getNextActiveChannel(0, m_channelActive, m_maxNumberOfTraces); if (m_settingsChanged) { m_settingsChanged = false; SET_NEXT_STATE(ScopeState_ReloadSettings) } else { SET_NEXT_STATE(ScopeState_TraceRequest) } } EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerState == ScopeState_RunningUpdate+1) { m_settingsChanged = true; // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Updating [Set run status]")); // Set running, step 2 TQString result; ds >> result; m_socket->clearFrameTail(); if (result == "ACK") { m_currentOpChannel = getNextActiveChannel(0, m_channelActive, m_maxNumberOfTraces); if (m_settingsChanged) { m_settingsChanged = false; SET_NEXT_STATE(ScopeState_ReloadSettings) } else { SET_NEXT_STATE(ScopeState_TraceRequest) } EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerState == ScopeState_ExternalCommandRequest) { // Execute pending command m_commHandlerMode = 2; m_socket->clearIncomingData(); EXEC_NEXT_STATE_IMMEDIATELY } SET_WATCHDOG_TIMER } else if (m_commHandlerMode == 2) { if (m_commHandlerCommandState == 0) { m_commHandlerMode = 0; m_commHandlerState = ScopeState_ChannelActiveStateRequest; EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerCommandState == 1) { // Set channel active ds << TQString("SETCHANNELACTIVE"); ds << m_nextOpChannel; ds << m_nextOpParameter16; m_socket->writeEndOfFrame(); m_commHandlerCommandState = 2; EXEC_NEXT_STATE_IMMEDIATELY } else if (m_commHandlerCommandState == 2) { // Get response data if (m_socket->canReadFrame()) { PAT_WATCHDOG_TIMER setTickerMessage(i18n("Connected")); // Set channel active, step 2 TQString result; ds >> result; m_socket->clearFrameTail(); if (result == "ACK") { m_commHandlerCommandState = 0; EXEC_NEXT_STATE_IMMEDIATELY } else { if (m_stopTraceUpdate == false) { COMMUNICATIONS_FAILED } else { setTickerMessage(i18n("Data acquisition stopped")); } } } else { if (!m_updateTimeoutTimer->isActive()) { if (m_stopTraceUpdate == false) { UPDATEDISPLAY_TIMEOUT } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else if (m_commHandlerCommandState == 3) { if (m_stopTraceUpdate == false) { m_commHandlerCommandState = 0; EXEC_NEXT_STATE_IMMEDIATELY } else { setTickerMessage(i18n("Data acquisition stopped")); } } } } else { m_commHandlerState = ScopeState_ResetRequest; m_commHandlerCommandState = 0; } processLockouts(); m_instrumentMutex->unlock(); } void ScopePart::postProcessTrace() { return; } void ScopePart::startDAQ() { m_stopTraceUpdate = false; if (m_socket) m_socket->clearIncomingData(); EXEC_NEXT_STATE_IMMEDIATELY } void ScopePart::stopDAQ() { if (m_commHandlerMode < 2) { m_stopTraceUpdate = true; for (int i=0; i<=MAXTRACES;i++) { m_channelActiveSet[i] = false; m_voltsDivSet[i] = false; } m_triggerLevelSet = false; m_triggerChannelSet = false; m_horizontalTimebaseSet = false; m_runningSet = false; m_commHandlerMode = 1; m_commHandlerCommandState = 3; mainEventLoop(); } } #define WAVEFORM_MAGIC_NUMBER 1 #define WAVEFORM_FILE_VERSION 4 void ScopePart::saveWaveforms() { TQString saveFileName = KFileDialog::getSaveFileName(TQString::null, "*.wfm|Waveform Files (*.wfm)", 0, i18n("Save waveforms...")); if (saveFileName != "") { TQFile file(saveFileName); file.open(IO_WriteOnly); TQDataStream ds(&file); TQ_INT32 magicNumber = WAVEFORM_MAGIC_NUMBER; TQ_INT32 version = WAVEFORM_FILE_VERSION; ds << magicNumber; ds << version; ds << m_hdivs; ds << m_vdivs; ds << m_maxNumberOfTraces; ds << m_maxNumberOfMathTraces; for (int traceno=1; traceno<=m_maxNumberOfTraces; traceno++) { TQ_UINT8 boolValue; boolValue = m_channelActive[traceno]; ds << boolValue; ds << m_samplesInTrace[traceno]; ds << m_traceAllowedVoltsDiv[traceno]; ds << m_voltsDiv[traceno]; ds << m_secsDiv[traceno]; ds << m_base->traceZoomWidget->traceOffset(traceno-1); ds << m_traceWidget->samples(traceno-1); ds << m_traceWidget->positions(traceno-1); } for (int traceno=1; traceno<=m_maxNumberOfMathTraces; traceno++) { TQ_UINT8 boolValue; boolValue = m_mathChannelActive[traceno]; ds << boolValue; ds << m_mathVoltsDiv[traceno]; ds << m_mathFirstOperand[traceno]; ds << m_mathSecondOperand[traceno]; ds << m_mathOperator[traceno]; ds << m_base->traceZoomWidget->traceOffset(traceno-1+m_maxNumberOfTraces); } for (int cursorno=0; cursorno<5; cursorno++) { ds << m_traceWidget->cursorPosition(cursorno); } ds << m_base->userNotes->text(); } } void ScopePart::recallWaveforms() { TQString openFileName = KFileDialog::getOpenFileName(TQString::null, "*.wfm|Waveform Files (*.wfm)", 0, i18n("Open waveforms...")); if (openFileName != "") { TQFile file(openFileName); file.open(IO_ReadOnly); TQDataStream ds(&file); TQ_INT32 magicNumber; TQ_INT32 version; ds >> magicNumber; if (magicNumber == WAVEFORM_MAGIC_NUMBER) { ds >> version; if ((version >= 1) && (version <= WAVEFORM_FILE_VERSION)) { ds >> m_hdivs; ds >> m_vdivs; ds >> m_maxNumberOfTraces; if (version >= 3) { ds >> m_maxNumberOfMathTraces; } for (int traceno=1; traceno<=m_maxNumberOfTraces; traceno++) { TQ_UINT8 boolValue; ds >> boolValue; m_channelActive[traceno] = (boolValue!=0)?true:false; ds >> m_samplesInTrace[traceno]; if (version >= 3) { ds >> m_traceAllowedVoltsDiv[traceno]; } ds >> m_voltsDiv[traceno]; ds >> m_secsDiv[traceno]; double offset; TQDoubleArray values; TQDoubleArray positions; ds >> offset; ds >> values; ds >> positions; m_traceWidget->setNumberOfSamples(traceno-1, m_samplesInTrace[traceno], true); m_traceWidget->setSamples(traceno-1, values); m_traceWidget->setPositions(traceno-1, positions); m_traceWidget->setTraceOffset(traceno-1, offset); m_base->traceZoomWidget->setSamples(traceno-1, values); m_base->traceZoomWidget->setPositions(traceno-1, positions); m_base->traceZoomWidget->setTraceOffset(traceno-1, offset); } if (version >= 3) { for (int traceno=1; traceno<=m_maxNumberOfMathTraces; traceno++) { TQ_UINT8 boolValue; ds >> boolValue; m_mathChannelActive[traceno] = (boolValue!=0)?true:false; ds >> m_mathVoltsDiv[traceno]; ds >> m_mathFirstOperand[traceno]; ds >> m_mathSecondOperand[traceno]; ds >> m_mathOperator[traceno]; if (version >= 4) { double offset; ds >> offset; m_traceWidget->setTraceOffset(traceno-1+m_maxNumberOfTraces, offset); m_base->traceZoomWidget->setTraceOffset(traceno-1+m_maxNumberOfTraces, offset); } } } for (int cursorno=0; cursorno<5; cursorno++) { double cursorPos; ds >> cursorPos; m_traceWidget->setCursorPosition(cursorno, cursorPos); } if (version < 2) { m_base->userNotes->setText(TQString::null); } else { TQString notes; ds >> notes; m_base->userNotes->setText(notes); } m_triggerChannel = -1; m_triggerLevel = 0; updateGraticule(); postProcessTrace(); processMathTraces(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); updateTraceControlWidgets(); } else { KMessageBox::error(0, i18n("The selected waveform file version (%1) is not compatible with this client, which only understands versions %2-%3").arg(version).arg(1).arg(WAVEFORM_FILE_VERSION), i18n("Invalid File")); } } else { KMessageBox::error(0, i18n("Invalid waveform file selected"), i18n("Invalid File")); } } } void ScopePart::updateZoomWidgetLimits(const TQRectF& zoomRect) { for (int traceno=0; tracenodisplayLimits(traceno); double widthSpan = fullZoomRect.width()-fullZoomRect.x(); double heightSpan = fullZoomRect.height()-fullZoomRect.y(); TQRectF zoomLimitsRect((fullZoomRect.x()+(widthSpan*(zoomRect.x()/100.0))), (fullZoomRect.y()+(heightSpan*(zoomRect.y()/100.0))), (fullZoomRect.x()+(widthSpan*((zoomRect.x()/100.0)+(zoomRect.width()/100.0)))), (fullZoomRect.y()+(heightSpan*((zoomRect.y()/100.0)+(zoomRect.height()/100.0))))); m_base->traceZoomWidget->setDisplayLimits(traceno, zoomLimitsRect); } } void ScopePart::processTriggerButtons() { int i; int channel = -1; const TraceControlWidget* widget = dynamic_cast(sender()); if (widget) { for (i=0; i= 0) && (channel <=MAXTRACES)) { channel = channel + 1; if (channel != m_triggerChannel) { m_triggerChannel = channel; m_triggerChannelSet = true; } } } for (int i=0; isetTriggerChannel(i == (m_triggerChannel-1)); } } } void ScopePart::updateGraticule() { m_traceWidget->setNumberOfHorizontalDivisions(m_hdivs); m_traceWidget->setNumberOfVerticalDivisions(m_vdivs); m_base->traceZoomWidget->setNumberOfHorizontalDivisions(m_hdivs); m_base->traceZoomWidget->setNumberOfVerticalDivisions(m_vdivs); if (!m_triggerLevelSet) { if ((m_triggerChannel > 0) && (m_triggerChannel <= m_maxNumberOfTraces)) { TraceNumberList activeTraces; activeTraces.append(m_triggerChannel-1); m_traceWidget->setCursorActiveTraceList(0, activeTraces); m_traceWidget->setCursorPosition(0, (50.0-((m_triggerLevel*100.0)/(m_voltsDiv[m_triggerChannel]*m_vdivs)))); m_traceWidget->setCursorEnabled(0, true); } else { m_traceWidget->setCursorEnabled(0, false); } } processTriggerButtons(); if (m_maxNumberOfTraces > 0) m_traceWidget->setTraceColor(0, TQColor(255, 255, 255)); if (m_maxNumberOfTraces > 1) m_traceWidget->setTraceColor(1, TQColor(128, 255, 128)); if (m_maxNumberOfTraces > 2) m_traceWidget->setTraceColor(2, TQColor(255, 255, 128)); if (m_maxNumberOfTraces > 3) m_traceWidget->setTraceColor(3, TQColor(128, 128, 255)); if (m_maxNumberOfTraces > 0) m_base->traceZoomWidget->setTraceColor(0, TQColor(255, 255, 255)); if (m_maxNumberOfTraces > 1) m_base->traceZoomWidget->setTraceColor(1, TQColor(128, 255, 128)); if (m_maxNumberOfTraces > 2) m_base->traceZoomWidget->setTraceColor(2, TQColor(255, 255, 128)); if (m_maxNumberOfTraces > 3) m_base->traceZoomWidget->setTraceColor(3, TQColor(128, 128, 255)); TQInt16List activeChannels; for (int traceno=1; traceno<=m_maxNumberOfTraces; traceno++) { m_traceWidget->setTraceEnabled(traceno-1, m_channelActive[traceno], TraceWidget::FullText, true); m_traceWidget->setTraceName(traceno-1, TQString("Channel %1").arg(traceno), true); m_traceWidget->setTraceHorizontalUnits(traceno-1, "s", true); m_traceWidget->setTraceVerticalUnits(traceno-1, "V", true); m_base->traceZoomWidget->setTraceEnabled(traceno-1, m_channelActive[traceno], TraceWidget::SummaryText, true); m_base->traceZoomWidget->setTraceName(traceno-1, TQString("Channel %1").arg(traceno), true); m_base->traceZoomWidget->setTraceHorizontalUnits(traceno-1, "s", true); m_base->traceZoomWidget->setTraceVerticalUnits(traceno-1, "V", true); m_traceWidget->setNumberOfSamples(traceno-1, m_samplesInTrace[traceno], true); m_base->traceZoomWidget->setNumberOfSamples(traceno-1, m_samplesInTrace[traceno], (tracenosetDisplayLimits(traceno-1, TQRectF(0.0, (m_voltsDiv[traceno]*m_vdivs)/2.0, (m_secsDiv[traceno]*m_hdivs), (m_voltsDiv[traceno]*m_vdivs)/-2.0), (tracenosetVoltsPerDivList(m_traceAllowedVoltsDiv[traceno]); m_traceControlWidgetList[traceno-1]->setSelectedVoltsPerDiv(m_voltsDiv[traceno]); m_traceControlWidgetList[traceno-1]->setTraceEnabled(m_channelActive[traceno]); } if (m_channelActive[traceno]) { activeChannels.append(traceno); } } for (int traceno=1; traceno<=m_maxNumberOfMathTraces; traceno++) { updateMathTraceAllowedVoltsPerDivList(traceno); m_traceWidget->setTraceEnabled(traceno-1+m_maxNumberOfTraces, m_mathChannelActive[traceno], TraceWidget::FullText, true); m_traceWidget->setTraceName(traceno-1+m_maxNumberOfTraces, TQString("Math %1").arg(traceno), true); m_traceWidget->setTraceHorizontalUnits(traceno-1+m_maxNumberOfTraces, m_mathHorizontalUnits[traceno], true); m_traceWidget->setTraceVerticalUnits(traceno-1+m_maxNumberOfTraces, m_mathVerticalUnits[traceno], true); m_base->traceZoomWidget->setTraceEnabled(traceno-1+m_maxNumberOfTraces, m_mathChannelActive[traceno], TraceWidget::SummaryText, true); m_base->traceZoomWidget->setTraceName(traceno-1+m_maxNumberOfTraces, TQString("Math %1").arg(traceno), true); m_base->traceZoomWidget->setTraceHorizontalUnits(traceno-1+m_maxNumberOfTraces, m_mathHorizontalUnits[traceno], true); m_base->traceZoomWidget->setTraceVerticalUnits(traceno-1+m_maxNumberOfTraces, m_mathVerticalUnits[traceno], true); m_traceWidget->setNumberOfSamples(traceno-1+m_maxNumberOfTraces, m_samplesInMathTrace[traceno], true); m_base->traceZoomWidget->setNumberOfSamples(traceno-1+m_maxNumberOfTraces, m_samplesInMathTrace[traceno], (tracenosetDisplayLimits(traceno-1+m_maxNumberOfTraces, TQRectF(0.0, (m_mathVoltsDiv[traceno]*m_vdivs)/2.0, (m_mathSecsDiv[traceno]*m_hdivs), (m_mathVoltsDiv[traceno]*m_vdivs)/-2.0), (tracenosetVerticalUnits(m_mathVerticalUnits[traceno]); m_mathTraceControlWidgetList[traceno-1]->setVoltsPerDivList(m_mathTraceAllowedVoltsDiv[traceno]); m_mathTraceControlWidgetList[traceno-1]->setSelectedVoltsPerDiv(m_mathVoltsDiv[traceno]); m_mathTraceControlWidgetList[traceno-1]->setTraceEnabled(m_mathChannelActive[traceno]); m_mathTraceControlWidgetList[traceno-1]->setFirstMathOperandList(activeChannels); m_mathTraceControlWidgetList[traceno-1]->setSecondMathOperandList(activeChannels); m_mathTraceControlWidgetList[traceno-1]->setMathOperatorList(m_availableMathOperators); m_mathTraceControlWidgetList[traceno-1]->setSelectedFirstMathOperand(m_mathFirstOperand[traceno]); m_mathTraceControlWidgetList[traceno-1]->setSelectedSecondMathOperand(m_mathSecondOperand[traceno]); m_mathTraceControlWidgetList[traceno-1]->setSelectedMathOperator(m_mathOperator[traceno]); } } updateZoomWidgetLimits(m_traceWidget->zoomBox()); } void ScopePart::updateTraceControlWidgets() { // Add or remove trace control widgets as needed... int i; for (i=0; itraceControlLayoutWidget); connect(m_traceControlWidgetList[i], SIGNAL(enableChanged(bool)), this, SLOT(traceControlEnableChanged(bool))); connect(m_traceControlWidgetList[i], SIGNAL(voltsPerDivChanged(double)), this, SLOT(traceControlVDivChanged(double))); connect(m_traceControlWidgetList[i], SIGNAL(triggerChannelChangeRequested()), this, SLOT(processTriggerButtons())); m_traceControlWidgetGrid->addMultiCellWidget(m_traceControlWidgetList[i], i, i, 0, 0); m_traceControlWidgetList[i]->setTraceName(i18n("Channel %1").arg(i+1)); m_traceControlWidgetList[i]->show(); } } for (i=m_maxNumberOfTraces; iremove(m_traceControlWidgetList[i]); delete m_traceControlWidgetList[i]; } } for (i=0; imathTraceControlLayoutWidget); connect(m_mathTraceControlWidgetList[i], SIGNAL(enableChanged(bool)), this, SLOT(mathTraceControlEnableChanged(bool))); connect(m_mathTraceControlWidgetList[i], SIGNAL(voltsPerDivChanged(double)), this, SLOT(mathTraceControlVDivChanged(double))); connect(m_mathTraceControlWidgetList[i], SIGNAL(firstMathOperandChanged(int)), this, SLOT(mathTraceControlFirstOperandChanged(int))); connect(m_mathTraceControlWidgetList[i], SIGNAL(secondMathOperandChanged(int)), this, SLOT(mathTraceControlSecondOperandChanged(int))); connect(m_mathTraceControlWidgetList[i], SIGNAL(mathOperatorChanged(TQString)), this, SLOT(mathTraceControlOperatorChanged(TQString))); m_mathTraceControlWidgetGrid->addMultiCellWidget(m_mathTraceControlWidgetList[i], i+m_maxNumberOfTraces, i+m_maxNumberOfTraces, 0, 0); m_mathTraceControlWidgetList[i]->setTraceName(i18n("Math %1").arg(i+1)); m_mathTraceControlWidgetList[i]->show(); } } for (i=m_maxNumberOfMathTraces; iremove(m_mathTraceControlWidgetList[i]); delete m_mathTraceControlWidgetList[i]; } } } void ScopePart::traceControlEnableChanged(bool enabled) { int i; int channel = -1; const TraceControlWidget* widget = dynamic_cast(sender()); if (widget) { for (i=0; i= 0) && (channel <=MAXTRACES)) { m_channelActive[channel+1] = enabled; m_channelActiveSet[channel+1] = true; } } updateGraticule(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); updateTraceControlWidgets(); } void ScopePart::traceControlVDivChanged(double vdiv) { int i; int channel = -1; const TraceControlWidget* widget = dynamic_cast(sender()); if (widget) { for (i=0; i= 0) && (channel <=MAXTRACES)) { m_voltsDiv[channel+1] = vdiv; m_voltsDivSet[channel+1] = true; } } updateGraticule(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); updateTraceControlWidgets(); } void ScopePart::traceControlSDivChanged(double sdiv) { m_horizontalTimebase = sdiv; m_horizontalTimebaseSet = true; } void ScopePart::mathTraceControlEnableChanged(bool enabled) { int i; int channel = -1; const MathTraceControlWidget* widget = dynamic_cast(sender()); if (widget) { for (i=0; i= 0) && (channel <=MAXMATHTRACES)) { m_mathChannelActive[channel+1] = enabled; } } updateGraticule(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); updateTraceControlWidgets(); processMathTraces(); } void ScopePart::mathTraceControlVDivChanged(double vdiv) { int i; int channel = -1; const MathTraceControlWidget* widget = dynamic_cast(sender()); if (widget) { for (i=0; i= 0) && (channel <=MAXMATHTRACES)) { m_mathVoltsDiv[channel+1] = vdiv; } } updateGraticule(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); updateTraceControlWidgets(); } void ScopePart::mathTraceControlFirstOperandChanged(int operand) { int i; int channel = -1; const MathTraceControlWidget* widget = dynamic_cast(sender()); if (widget) { for (i=0; i= 0) && (channel <=MAXMATHTRACES)) { m_mathFirstOperand[channel+1] = operand; } } updateGraticule(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); updateTraceControlWidgets(); processMathTraces(); } void ScopePart::mathTraceControlSecondOperandChanged(int operand) { int i; int channel = -1; const MathTraceControlWidget* widget = dynamic_cast(sender()); if (widget) { for (i=0; i= 0) && (channel <=MAXMATHTRACES)) { m_mathSecondOperand[channel+1] = operand; } } updateGraticule(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); updateTraceControlWidgets(); processMathTraces(); } void ScopePart::mathTraceControlOperatorChanged(TQString op) { int i; int channel = -1; const MathTraceControlWidget* widget = dynamic_cast(sender()); if (widget) { for (i=0; i= 0) && (channel <=MAXMATHTRACES)) { m_mathOperator[channel+1] = op; } } updateGraticule(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); updateTraceControlWidgets(); processMathTraces(); } void ScopePart::updateMathTraceAllowedVoltsPerDivList(int traceno) { if (m_mathFirstOperand[traceno] < 1) { m_mathFirstOperand[traceno] = 1; } if (m_mathSecondOperand[traceno] < 1) { m_mathSecondOperand[traceno] = 1; } if (m_mathFirstOperand[traceno] > MAXTRACES) { m_mathFirstOperand[traceno] = MAXTRACES; } if (m_mathSecondOperand[traceno] > MAXTRACES) { m_mathSecondOperand[traceno] = MAXTRACES; } if (m_mathOperator[traceno] == "") { m_mathOperator[traceno] = "+"; } int firstOperandChannel = m_mathFirstOperand[traceno]; int secondOperandChannel = m_mathSecondOperand[traceno]; if ((m_mathOperator[traceno] == "+") || (m_mathOperator[traceno] == "-") || (m_mathOperator[traceno] == "*") || (m_mathOperator[traceno] == "/") || (m_mathOperator[traceno] == "Average") || (m_mathOperator[traceno] == "Integral") || (m_mathOperator[traceno] == "Derivative")) { // Compute intersection of both trace operand volt/div lists m_mathTraceAllowedVoltsDiv[traceno].clear(); TQDoubleList::iterator it; for (it = m_traceAllowedVoltsDiv[firstOperandChannel].begin(); it != m_traceAllowedVoltsDiv[firstOperandChannel].end(); ++it) { m_mathTraceAllowedVoltsDiv[traceno].append(*it); } for (it = m_traceAllowedVoltsDiv[secondOperandChannel].begin(); it != m_traceAllowedVoltsDiv[secondOperandChannel].end(); ++it) { if (!m_mathTraceAllowedVoltsDiv[traceno].contains(*it)) { m_mathTraceAllowedVoltsDiv[traceno].append(*it); } } for (int i=1; i<=m_maxNumberOfTraces; i++) { int vdiv = m_voltsDiv[i]; if (!m_mathTraceAllowedVoltsDiv[traceno].contains(vdiv)) { m_mathTraceAllowedVoltsDiv[traceno].append(vdiv); } } qHeapSort(m_mathTraceAllowedVoltsDiv[traceno]); if ((m_mathTraceAllowedVoltsDiv[traceno].count() > 0) && (m_mathOperator[traceno] == "Integral")) { // Append a handful of larger volt/div settings int vdiv = m_mathTraceAllowedVoltsDiv[traceno][m_mathTraceAllowedVoltsDiv[traceno].count()-1]; vdiv *= 10; m_mathTraceAllowedVoltsDiv[traceno].append(vdiv); vdiv *= 10; m_mathTraceAllowedVoltsDiv[traceno].append(vdiv); vdiv *= 10; m_mathTraceAllowedVoltsDiv[traceno].append(vdiv); } // Reset GUI if not set (e.g. after startup) if ((m_mathVoltsDiv[traceno] == 0) && (m_mathTraceAllowedVoltsDiv[traceno].count() > 0)) { m_mathVoltsDiv[traceno] = m_mathTraceAllowedVoltsDiv[traceno][0]; } int firstTraceLength = m_samplesInTrace[m_mathFirstOperand[traceno]]; m_samplesInMathTrace[traceno] = firstTraceLength; m_mathSecsDiv[traceno] = m_secsDiv[traceno]; m_mathHorizontalUnits[traceno] = "s"; m_mathVerticalUnits[traceno] = "V"; } #ifdef ENABLE_FFT else if (m_mathOperator[traceno] == "FFT") { int firstTraceLength = m_samplesInTrace[m_mathFirstOperand[traceno]]; m_samplesInMathTrace[traceno] = firstTraceLength; // Calculate horizontal steps per division // Full scale needs to be the sampling rate TQDoubleArray inputPositions = m_traceWidget->positions(m_mathFirstOperand[traceno]-1); double fs = 1.0 / (inputPositions[1] - inputPositions[0]); fs = fs / 2.0; // Truncate waveform at the Nyquist frequency m_mathSecsDiv[traceno] = fs/m_hdivs; // Add several dB/div settings m_mathTraceAllowedVoltsDiv[traceno].clear(); m_mathTraceAllowedVoltsDiv[traceno].append(0.1); m_mathTraceAllowedVoltsDiv[traceno].append(1); m_mathTraceAllowedVoltsDiv[traceno].append(10); m_mathTraceAllowedVoltsDiv[traceno].append(100); m_mathTraceAllowedVoltsDiv[traceno].append(1000); qHeapSort(m_mathTraceAllowedVoltsDiv[traceno]); m_mathHorizontalUnits[traceno] = "Hz"; m_mathVerticalUnits[traceno] = "dB"; // Get next highest power of 2 for the FFT algorithm int fftLength = powf(2, ceilf(log2f(firstTraceLength))); m_samplesInMathTrace[traceno] = fftLength; } #endif // ENABLE_FFT else { m_mathTraceAllowedVoltsDiv[traceno].clear(); } } void ScopePart::processMathTraces() { for (int traceno=1; traceno<=m_maxNumberOfMathTraces; traceno++) { if ((m_mathOperator[traceno] == "+") || (m_mathOperator[traceno] == "-") || (m_mathOperator[traceno] == "*") || (m_mathOperator[traceno] == "/")) { TQDoubleArray outputValues; TQDoubleArray outputPositions; TQDoubleArray firstValues = m_traceWidget->samples(m_mathFirstOperand[traceno]-1); TQDoubleArray firstPositions = m_traceWidget->positions(m_mathFirstOperand[traceno]-1); TQDoubleArray secondValues = m_traceWidget->samples(m_mathSecondOperand[traceno]-1); TQDoubleArray secondPositions = m_traceWidget->positions(m_mathSecondOperand[traceno]-1); outputValues.resize(m_samplesInMathTrace[traceno]); outputPositions = firstPositions; if (m_mathOperator[traceno] == "+") { for (int i=0; i < m_samplesInMathTrace[traceno]; i++) { outputValues[i] = firstValues[i] + secondValues[i]; } } else if (m_mathOperator[traceno] == "-") { for (int i=0; i < m_samplesInMathTrace[traceno]; i++) { outputValues[i] = firstValues[i] - secondValues[i]; } } else if (m_mathOperator[traceno] == "*") { for (int i=0; i < m_samplesInMathTrace[traceno]; i++) { outputValues[i] = firstValues[i] * secondValues[i]; } } else if (m_mathOperator[traceno] == "/") { for (int i=0; i < m_samplesInMathTrace[traceno]; i++) { if (secondValues[i] == 0) { secondValues[i] = 1e-12; } outputValues[i] = firstValues[i] / secondValues[i]; } } else { for (int i=0; i < m_samplesInMathTrace[traceno]; i++) { outputValues[i] = 0; } } m_traceWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_traceWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); m_base->traceZoomWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_base->traceZoomWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); } else if (m_mathOperator[traceno] == "Average") { TQDoubleArray outputValues; TQDoubleArray outputPositions; TQDoubleArray inputValues = m_traceWidget->samples(m_mathFirstOperand[traceno]-1); TQDoubleArray inputPositions = m_traceWidget->positions(m_mathFirstOperand[traceno]-1); outputValues.resize(m_samplesInMathTrace[traceno]); outputPositions = inputPositions; double accumulator = 0; for (int i=0; i < m_samplesInMathTrace[traceno]; i++) { accumulator += inputValues[i]; } accumulator /= m_samplesInMathTrace[traceno]; for (int i=0; i < m_samplesInMathTrace[traceno]; i++) { outputValues[i] = accumulator; } m_traceWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_traceWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); m_base->traceZoomWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_base->traceZoomWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); } else if (m_mathOperator[traceno] == "Integral") { TQDoubleArray outputValues; TQDoubleArray outputPositions; TQDoubleArray inputValues = m_traceWidget->samples(m_mathFirstOperand[traceno]-1); TQDoubleArray inputPositions = m_traceWidget->positions(m_mathFirstOperand[traceno]-1); outputValues.resize(m_samplesInMathTrace[traceno]); outputPositions = inputPositions; double accumulator = 0; for (int i=0; i < m_samplesInMathTrace[traceno]; i++) { accumulator += inputValues[i]; outputValues[i] = accumulator; } m_traceWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_traceWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); m_base->traceZoomWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_base->traceZoomWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); } else if (m_mathOperator[traceno] == "Derivative") { TQDoubleArray outputValues; TQDoubleArray outputPositions; TQDoubleArray inputValues = m_traceWidget->samples(m_mathFirstOperand[traceno]-1); TQDoubleArray inputPositions = m_traceWidget->positions(m_mathFirstOperand[traceno]-1); outputValues.resize(m_samplesInMathTrace[traceno]); outputPositions = inputPositions; outputValues[0] = 0; for (int i=1; i < m_samplesInMathTrace[traceno]; i++) { outputValues[i] = inputValues[i] - inputValues[i-1]; } m_traceWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_traceWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); m_base->traceZoomWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_base->traceZoomWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); } #ifdef ENABLE_FFT else if (m_mathOperator[traceno] == "FFT") { TQDoubleArray outputValues; TQDoubleArray outputPositions; TQDoubleArray inputValues = m_traceWidget->samples(m_mathFirstOperand[traceno]-1); TQDoubleArray inputPositions = m_traceWidget->positions(m_mathFirstOperand[traceno]-1); int inputLength = m_samplesInTrace[m_mathFirstOperand[traceno]]; int fftLength = m_samplesInMathTrace[traceno]; // Resize arrays inputValues.resize(fftLength); outputValues.resize(fftLength); outputPositions.resize(fftLength); // Generate output positions // The FFT starts at 0Hz and goes up in Fs/N steps double pos = 0; double fs = 1.0 / (inputPositions[1] - inputPositions[0]); double step = fs / fftLength; for (int i=0; isetSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_traceWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); m_base->traceZoomWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_base->traceZoomWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); } #endif // ENABLE_FFT else { TQDoubleArray outputValues; TQDoubleArray outputPositions; for (int i=0; i < m_samplesInMathTrace[traceno]; i++) { outputValues[i] = 0; } m_traceWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_traceWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); m_base->traceZoomWidget->setSamples(m_maxNumberOfTraces-1+traceno, outputValues); m_base->traceZoomWidget->setPositions(m_maxNumberOfTraces-1+traceno, outputPositions); } } } void ScopePart::cursorLevelChanged(uint cursor, double level) { if (cursor == 0) { // Trigger level changed m_triggerLevel = (((50.0-level)*(m_voltsDiv[m_triggerChannel]*m_vdivs))/100.0); m_triggerLevelSet = true; updateGraticule(); m_traceWidget->repaint(false); m_base->traceZoomWidget->repaint(false); updateTraceControlWidgets(); } } void ScopePart::startScope() { m_running = true; m_runningSet = true; } void ScopePart::stopScope() { m_running = false; m_runningSet = true; } TDEAboutData* ScopePart::createAboutData() { return new TDEAboutData( APP_NAME, I18N_NOOP( APP_PRETTYNAME ), APP_VERSION ); } } //namespace RemoteLab #include "part.moc"