summaryrefslogtreecommitdiffstats
path: root/debian/uncrustify-trinity/uncrustify-trinity-0.74.0/src/md5.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'debian/uncrustify-trinity/uncrustify-trinity-0.74.0/src/md5.cpp')
-rw-r--r--debian/uncrustify-trinity/uncrustify-trinity-0.74.0/src/md5.cpp308
1 files changed, 308 insertions, 0 deletions
diff --git a/debian/uncrustify-trinity/uncrustify-trinity-0.74.0/src/md5.cpp b/debian/uncrustify-trinity/uncrustify-trinity-0.74.0/src/md5.cpp
new file mode 100644
index 00000000..af8874a4
--- /dev/null
+++ b/debian/uncrustify-trinity/uncrustify-trinity-0.74.0/src/md5.cpp
@@ -0,0 +1,308 @@
+/**
+ * This code implements the MD5 message-digest algorithm.
+ * The algorithm is due to Ron Rivest. This code was
+ * written by Colin Plumb in 1993, no copyright is claimed.
+ * This code is in the public domain; do with it what you wish.
+ *
+ * Equivalent code is available from RSA Data Security, Inc.
+ * This code has been tested against that, and is equivalent,
+ * except that you don't need to include two pages of legales
+ * with every copy.
+ *
+ * To compute the message digest of a chunk of bytes, declare an
+ * MD5Context structure, pass it to MD5Init, call MD5Update as
+ * needed on buffers full of bytes, and then call MD5Final, which
+ * will fill a supplied 16-byte array with the digest.
+ *
+ * @license Public Domain / GPL v2+
+ */
+
+#include "md5.h"
+
+#include <string.h>
+
+
+void MD5::reverse_u32(UINT8 *buf, int n_u32)
+{
+ UINT8 tmp;
+
+ if (m_big_endian)
+ {
+ // change { 4, 3, 2, 1 } => { 1, 2, 3, 4 }
+ while (n_u32-- > 0)
+ {
+ tmp = buf[0];
+ buf[0] = buf[3];
+ buf[3] = tmp;
+
+ tmp = buf[1];
+ buf[1] = buf[2];
+ buf[2] = tmp;
+
+ buf += 4;
+ }
+ }
+ else
+ {
+ // change { 4, 3, 2, 1 } => { 3, 4, 1, 2 }
+ while (n_u32-- > 0)
+ {
+ tmp = buf[0];
+ buf[0] = buf[1];
+ buf[1] = tmp;
+
+ tmp = buf[2];
+ buf[2] = buf[3];
+ buf[3] = tmp;
+
+ buf += 4;
+ }
+ }
+}
+
+
+MD5::MD5()
+{
+ m_buf[0] = 0x01020304;
+
+ /*
+ * Little endian = { 4, 3, 2, 1 }
+ * Big endian = { 1, 2, 3, 4 }
+ * PDP endian = { 3, 4, 1, 2 }
+ *
+ * The MD5 stuff is written for little endian.
+ */
+
+ m_in8 = (UINT8 *)m_in32;
+ m_need_byteswap = *(UINT8 *)m_buf != 4;
+ m_big_endian = *(UINT8 *)m_buf == 1;
+}
+
+
+//! Start MD5 accumulation.
+void MD5::Init()
+{
+ m_buf[0] = 0x67452301;
+ m_buf[1] = 0xefcdab89;
+ m_buf[2] = 0x98badcfe;
+ m_buf[3] = 0x10325476;
+
+ m_bits[0] = 0;
+ m_bits[1] = 0;
+}
+
+
+//! Update context to reflect the concatenation of another buffer full of bytes.
+void MD5::Update(const void *data, UINT32 len)
+{
+ const UINT8 *buf = (const UINT8 *)data;
+
+ UINT32 t = m_bits[0]; // Update bitcount
+
+ if ((m_bits[0] = t + ((UINT32)len << 3)) < t)
+ {
+ m_bits[1]++; // Carry from low to high
+ }
+ m_bits[1] += len >> 29;
+
+ t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data
+
+ // Handle any leading odd-sized chunks
+ if (t)
+ {
+ UINT8 *p = m_in8 + t;
+
+ t = 64 - t;
+
+ if (len < t)
+ {
+ memcpy(p, buf, len);
+ return;
+ }
+ memcpy(p, buf, t);
+
+ if (m_need_byteswap)
+ {
+ reverse_u32(m_in8, 16);
+ }
+ Transform(m_buf, m_in32);
+ buf += t;
+ len -= t;
+ }
+
+ // Process data in 64-byte chunks
+ while (len >= 64)
+ {
+ memcpy(m_in32, buf, 64);
+
+ if (m_need_byteswap)
+ {
+ reverse_u32(m_in8, 16);
+ }
+ Transform(m_buf, m_in32);
+ buf += 64; // TODO: possible creation of out-of-bounds pointer 64 beyond end of data
+ len -= 64;
+ }
+ // Save off any remaining bytes of data
+ memcpy(m_in32, buf, len); // TODO: possible access beyond array
+} // MD5::Update
+
+
+void MD5::Final(UINT8 digest[16])
+{
+ // Compute number of bytes modulo 64
+ UINT32 count = (m_bits[0] >> 3) & 0x3F;
+
+ /*
+ * Set the first char of padding to 0x80. This is safe since there is always
+ * at least one byte free
+ */
+ UINT8 *p = m_in8 + count;
+
+ *p++ = 0x80;
+
+ // Bytes of padding needed to make 64 bytes
+ count = 64 - 1 - count;
+
+ // Pad out to 56 modulo 64
+ if (count < 8)
+ {
+ // Two lots of padding: Pad the first block to 64 bytes
+ memset(p, 0, count);
+
+ if (m_need_byteswap)
+ {
+ reverse_u32(m_in8, 16);
+ }
+ Transform(m_buf, m_in32);
+
+ // Now fill the next block with 56 bytes
+ memset(m_in32, 0, 56);
+ }
+ else
+ {
+ // Pad block to 56 bytes
+ memset(p, 0, count - 8);
+ }
+
+ if (m_need_byteswap)
+ {
+ reverse_u32(m_in8, 14);
+ }
+ // Append length in bits and transform
+ memcpy(m_in8 + 56, &m_bits[0], 4);
+ memcpy(m_in8 + 60, &m_bits[1], 4);
+
+ Transform(m_buf, m_in32);
+
+ if (m_need_byteswap)
+ {
+ reverse_u32((UINT8 *)m_buf, 4);
+ }
+ memcpy(digest, m_buf, 16);
+} // MD5::Final
+
+
+// The four core functions - F1 is optimized somewhat
+// #define F1(x, y, z) (x & y | ~x & z)
+#define F1(x, y, z) (z ^ (x & (y ^ z)))
+#define F2(x, y, z) F1(z, x, y)
+#define F3(x, y, z) (x ^ y ^ z)
+#define F4(x, y, z) (y ^ (x | ~z))
+
+
+// This is the central step in the MD5 algorithm.
+#define MD5STEP(f, w, x, y, z, data, s) \
+ ((w) += f((x), (y), (z)) + (data), (w) = (w) << (s) | (w) >> (32 - (s)), (w) += (x))
+
+
+void MD5::Transform(UINT32 buf[4], UINT32 in_data[16])
+{
+ UINT32 a = buf[0];
+ UINT32 b = buf[1];
+ UINT32 c = buf[2];
+ UINT32 d = buf[3];
+
+ MD5STEP(F1, a, b, c, d, in_data[0] + 0xd76aa478, 7);
+ MD5STEP(F1, d, a, b, c, in_data[1] + 0xe8c7b756, 12);
+ MD5STEP(F1, c, d, a, b, in_data[2] + 0x242070db, 17);
+ MD5STEP(F1, b, c, d, a, in_data[3] + 0xc1bdceee, 22);
+ MD5STEP(F1, a, b, c, d, in_data[4] + 0xf57c0faf, 7);
+ MD5STEP(F1, d, a, b, c, in_data[5] + 0x4787c62a, 12);
+ MD5STEP(F1, c, d, a, b, in_data[6] + 0xa8304613, 17);
+ MD5STEP(F1, b, c, d, a, in_data[7] + 0xfd469501, 22);
+ MD5STEP(F1, a, b, c, d, in_data[8] + 0x698098d8, 7);
+ MD5STEP(F1, d, a, b, c, in_data[9] + 0x8b44f7af, 12);
+ MD5STEP(F1, c, d, a, b, in_data[10] + 0xffff5bb1, 17);
+ MD5STEP(F1, b, c, d, a, in_data[11] + 0x895cd7be, 22);
+ MD5STEP(F1, a, b, c, d, in_data[12] + 0x6b901122, 7);
+ MD5STEP(F1, d, a, b, c, in_data[13] + 0xfd987193, 12);
+ MD5STEP(F1, c, d, a, b, in_data[14] + 0xa679438e, 17);
+ MD5STEP(F1, b, c, d, a, in_data[15] + 0x49b40821, 22);
+
+ MD5STEP(F2, a, b, c, d, in_data[1] + 0xf61e2562, 5);
+ MD5STEP(F2, d, a, b, c, in_data[6] + 0xc040b340, 9);
+ MD5STEP(F2, c, d, a, b, in_data[11] + 0x265e5a51, 14);
+ MD5STEP(F2, b, c, d, a, in_data[0] + 0xe9b6c7aa, 20);
+ MD5STEP(F2, a, b, c, d, in_data[5] + 0xd62f105d, 5);
+ MD5STEP(F2, d, a, b, c, in_data[10] + 0x02441453, 9);
+ MD5STEP(F2, c, d, a, b, in_data[15] + 0xd8a1e681, 14);
+ MD5STEP(F2, b, c, d, a, in_data[4] + 0xe7d3fbc8, 20);
+ MD5STEP(F2, a, b, c, d, in_data[9] + 0x21e1cde6, 5);
+ MD5STEP(F2, d, a, b, c, in_data[14] + 0xc33707d6, 9);
+ MD5STEP(F2, c, d, a, b, in_data[3] + 0xf4d50d87, 14);
+ MD5STEP(F2, b, c, d, a, in_data[8] + 0x455a14ed, 20);
+ MD5STEP(F2, a, b, c, d, in_data[13] + 0xa9e3e905, 5);
+ MD5STEP(F2, d, a, b, c, in_data[2] + 0xfcefa3f8, 9);
+ MD5STEP(F2, c, d, a, b, in_data[7] + 0x676f02d9, 14);
+ MD5STEP(F2, b, c, d, a, in_data[12] + 0x8d2a4c8a, 20);
+
+ MD5STEP(F3, a, b, c, d, in_data[5] + 0xfffa3942, 4);
+ MD5STEP(F3, d, a, b, c, in_data[8] + 0x8771f681, 11);
+ MD5STEP(F3, c, d, a, b, in_data[11] + 0x6d9d6122, 16);
+ MD5STEP(F3, b, c, d, a, in_data[14] + 0xfde5380c, 23);
+ MD5STEP(F3, a, b, c, d, in_data[1] + 0xa4beea44, 4);
+ MD5STEP(F3, d, a, b, c, in_data[4] + 0x4bdecfa9, 11);
+ MD5STEP(F3, c, d, a, b, in_data[7] + 0xf6bb4b60, 16);
+ MD5STEP(F3, b, c, d, a, in_data[10] + 0xbebfbc70, 23);
+ MD5STEP(F3, a, b, c, d, in_data[13] + 0x289b7ec6, 4);
+ MD5STEP(F3, d, a, b, c, in_data[0] + 0xeaa127fa, 11);
+ MD5STEP(F3, c, d, a, b, in_data[3] + 0xd4ef3085, 16);
+ MD5STEP(F3, b, c, d, a, in_data[6] + 0x04881d05, 23);
+ MD5STEP(F3, a, b, c, d, in_data[9] + 0xd9d4d039, 4);
+ MD5STEP(F3, d, a, b, c, in_data[12] + 0xe6db99e5, 11);
+ MD5STEP(F3, c, d, a, b, in_data[15] + 0x1fa27cf8, 16);
+ MD5STEP(F3, b, c, d, a, in_data[2] + 0xc4ac5665, 23);
+
+ MD5STEP(F4, a, b, c, d, in_data[0] + 0xf4292244, 6);
+ MD5STEP(F4, d, a, b, c, in_data[7] + 0x432aff97, 10);
+ MD5STEP(F4, c, d, a, b, in_data[14] + 0xab9423a7, 15);
+ MD5STEP(F4, b, c, d, a, in_data[5] + 0xfc93a039, 21);
+ MD5STEP(F4, a, b, c, d, in_data[12] + 0x655b59c3, 6);
+ MD5STEP(F4, d, a, b, c, in_data[3] + 0x8f0ccc92, 10);
+ MD5STEP(F4, c, d, a, b, in_data[10] + 0xffeff47d, 15);
+ MD5STEP(F4, b, c, d, a, in_data[1] + 0x85845dd1, 21);
+ MD5STEP(F4, a, b, c, d, in_data[8] + 0x6fa87e4f, 6);
+ MD5STEP(F4, d, a, b, c, in_data[15] + 0xfe2ce6e0, 10);
+ MD5STEP(F4, c, d, a, b, in_data[6] + 0xa3014314, 15);
+ MD5STEP(F4, b, c, d, a, in_data[13] + 0x4e0811a1, 21);
+ MD5STEP(F4, a, b, c, d, in_data[4] + 0xf7537e82, 6);
+ MD5STEP(F4, d, a, b, c, in_data[11] + 0xbd3af235, 10);
+ MD5STEP(F4, c, d, a, b, in_data[2] + 0x2ad7d2bb, 15);
+ MD5STEP(F4, b, c, d, a, in_data[9] + 0xeb86d391, 21);
+
+ buf[0] += a;
+ buf[1] += b;
+ buf[2] += c;
+ buf[3] += d;
+} // MD5::Transform
+
+
+void MD5::Calc(const void *data, UINT32 length, UINT8 digest[16])
+{
+ MD5 md5;
+
+ md5.Init();
+ md5.Update(data, length);
+ md5.Final(digest);
+}