summaryrefslogtreecommitdiffstats
path: root/debian/pyrex/pyrex-0.9.9/Doc/Manual/basics.html
blob: 132c28997e65d8817a0222fcc620059b9c71ef3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html><head>
<meta content="text/html; charset=ISO-8859-1" http-equiv="content-type"><title>Language Basics</title>

</head>
<body>
<h1>
<hr style="width: 100%; height: 2px;">Language
Basics
<hr width="100%"></h1>
<ul id="mozToc">
<!--mozToc h2 1 h3 2--><li><a href="#mozTocId641350">Python
functions vs. C functions</a></li>
<li><a href="#mozTocId972536">Python objects as
parameters
and return values</a></li>
<li><a href="#mozTocId155104">C
variable and type definitions</a>
<ul>
<li><a href="#mozTocId890190">Forward
Declarations</a></li>
<li><a href="#mozTocId522210">Grouping
multiple C declarations</a></li>
</ul>
</li>
<li><a href="#mozTocId763321">Automatic
type conversions</a>
<ul>
<li><a href="#mozTocId440941">Caveats
when using a Python string in a C context</a></li>
</ul>
</li>
<li><a href="#mozTocId834148">Scope rules</a></li>
<li><a href="#mozTocId954330">Statements and
expressions</a>
<ul>
<li><a href="#mozTocId401576">Differences
between C
and Pyrex
expressions</a></li>
<li><a href="#mozTocId899067">Integer for-loops</a></li>
<li><a href="#mozTocId457396">Catching
exceptions and tracebacks</a></li>
</ul>
</li>
<li><a href="#mozTocId482761">Error return values</a>
<ul>
<li><a href="#mozTocId622828">Checking
return values of non-Pyrex functions</a></li>
</ul>
</li>
<li><a href="#mozTocId494354">The include
statement</a></li>
<li><a href="#mozTocId849661">Keyword-only
arguments</a></li>
<li><a href="#mozTocId829237">Built-in Names</a>
<ul>
<li><a href="#mozTocId813519">Built-in
Constants</a></li>
<li><a href="#mozTocId593628">Built-in
Functions</a></li>
<li><a href="#mozTocId452377">Built-in Types</a></li>
</ul>
</li>
<li><a href="#mozTocId42018">Conditional
Compilation</a>
<ul>
<li><a href="#mozTocId379306">Compile-Time
Definitions</a></li>
<li><a href="#mozTocId997015">Conditional
Statements</a></li>
</ul>
</li>
</ul>
This
section describes the basic features of the Pyrex language. The
facilities covered in this section allow you to create Python-callable
functions that manipulate C data structures and convert between Python
and C data types. Later sections will cover facilities for <a href="external.html">wrapping external C code</a>, <a href="extension_types.html">creating new Python types</a>
and <a href="sharing.html">cooperation between Pyrex
modules</a>.<br>
<h2><a class="mozTocH2" name="mozTocId641350"></a>
<a name="PyFuncsVsCFuncs"></a>Python
functions vs. C functions</h2>
There are two kinds of function
definition in Pyrex:
<p><b>Python functions</b> are
defined using the <b>def</b> statement, as in Python. They
take Python objects as parameters and return Python objects. </p>
<p><b>C functions</b> are defined using the new <b>cdef</b>
statement. They take either Python objects or C values as parameters,
and can return either Python objects or C values. </p>
<p>Within
a Pyrex module, Python functions and C functions can call each other
freely, but only Python functions can be called from outside the module
by
interpreted Python code. So, any functions that you want to "export"
from your Pyrex module must be declared as Python functions using <span style="font-weight: bold;">def</span>. </p>
<p>Parameters
of either type of function can be declared to have C data types, using
normal C declaration syntax. For example, </p>
<blockquote>
<pre>def spam(int i, char *s):<br>&nbsp;&nbsp;&nbsp; ...</pre>
<pre>cdef int eggs(unsigned long l, float f):<br>&nbsp;&nbsp;&nbsp; ...</pre>
</blockquote>
When
a parameter of a Python function is declared
to have a C data type, it is passed in as a Python object and
automatically converted to a C value, if possible. Automatic conversion
is currently only possible for numeric types and string types;
attempting to use any other type for the parameter of a Python function
will result in a compile-time error.
<p>C functions, on the
other hand, can have parameters of any type, since they're passed in
directly using a normal C function call. </p>
<h2><a class="mozTocH2" name="mozTocId972536"></a>
<a name="PyObjParams"></a>Python objects as
parameters
and return values</h2>
If no type is specified for a parameter or
return value, <i>it is assumed to be a Python object.</i>
(Note that this is different from the C convention, where it would
default to <tt>int</tt>.) For example, the following
defines a C function that takes two Python objects as parameters and
returns a Python object:
<blockquote>
<pre>cdef spamobjs(x, y):<br>&nbsp;&nbsp;&nbsp; ...</pre>
</blockquote>
Reference counting for these objects is performed
automatically according to the standard Python/C API rules (i.e.
borrowed references are taken as parameters and a new reference is
returned).
<p>The name <b>object</b> can also be
used to explicitly declare something as a Python object. This can be
useful if the name being declared would otherwise
be taken as the name of a type, for example, </p>
<blockquote>
<pre>cdef ftang(object int):<br>&nbsp;&nbsp;&nbsp; ...</pre>
</blockquote>
declares
a parameter called <tt>int</tt>
which is a Python object. You can also use <b>object </b>as
the explicit return type of a function, e.g.
<blockquote>
<pre>cdef object ftang(object int):<br>&nbsp;&nbsp;&nbsp; ...</pre>
</blockquote>
In the interests of clarity, it is probably a good
idea to always be explicit about <b>object </b>parameters
in C functions.
<h2><a class="mozTocH2" name="mozTocId155104"></a><a name="CVarAndTypeDecls"></a>C
variable and type definitions</h2>
The <b>cdef</b>
statement is also used to declare C variables, either
local or module-level:
<blockquote>
<pre>cdef int i, j, k<br>cdef float f, g[42], *h</pre>
</blockquote>
and C struct, union or enum types:
<blockquote>
<pre>cdef struct Grail:<br>&nbsp;&nbsp;&nbsp; int age<br>&nbsp;&nbsp;&nbsp; float volume</pre>
<pre>cdef union Food:<br>&nbsp;&nbsp;&nbsp; char *spam<br>&nbsp;&nbsp;&nbsp; float *eggs</pre>
<pre>cdef enum CheeseType:<br>&nbsp;&nbsp;&nbsp; cheddar, edam,&nbsp;<br>&nbsp;&nbsp;&nbsp; camembert</pre>
<pre>cdef enum CheeseState:<br>&nbsp;&nbsp;&nbsp; hard = 1<br>&nbsp;&nbsp;&nbsp; soft = 2<br>&nbsp;&nbsp;&nbsp; runny = 3</pre>
</blockquote>
There is currently no special syntax for defining a
constant, but you
can use an anonymous enum declaration for this purpose, for example,
<blockquote><tt>cdef
enum:</tt> <br>
<tt>&nbsp;&nbsp;&nbsp;
tons_of_spam = 3</tt></blockquote>
Note that the words <span style="font-family: monospace;">struct</span>,
<span style="font-family: monospace;">union</span>
and <span style="font-family: monospace;">enum</span>
are used
only when <i>defining</i> a type, not when referring to
it. For example, to declare a variable pointing to a Grail you would
write
<blockquote>
<pre>cdef Grail *gp</pre>
</blockquote>
and <i>not</i>
<blockquote>
<pre>cdef struct Grail *gp <font color="#ed181e"># WRONG</font></pre>
</blockquote>
There is also a <b>ctypedef</b> statement for giving names
to types, e.g.
<blockquote>
<pre>ctypedef unsigned long ULong</pre>
<pre>ctypedef int *IntPtr<br></pre>
</blockquote>
<h3><a class="mozTocH2" name="mozTocId890190"></a>Forward
Declarations</h3>
If
you have two struct or union types containing pointers that refer to
each other, you will need to use a forward declaration for at least one
of them. This is simply the header of a struct or union without the
colon or body, for example,<br>
<br>
<div style="margin-left: 40px;"><span style="font-family: monospace;">cdef struct Sandwich</span><br style="font-family: monospace;">
<br style="font-family: monospace;">
<span style="font-family: monospace;">cdef struct Lunchbox:</span><br style="font-family: monospace;">
<div style="margin-left: 40px;"><span style="font-family: monospace;">Sandwich *lunch</span><br style="font-family: monospace;">
</div>
<br style="font-family: monospace;">
<span style="font-family: monospace;">cdef struct Sandwich:</span><br style="font-family: monospace;">
<div style="margin-left: 40px;"><span style="font-family: monospace;">Lunchbox *container</span><br>
</div>
</div>
<br>
You
can also forward-declare C functions, but there should be little need
to do this. Pyrex processes all declarations in a module before
analysing any executable statements, so calling a function defined
further down in the source file is usually not a problem.
<h3><a class="mozTocH2" name="mozTocId522210"></a><a name="Grouping_multiple_C_declarations"></a>Grouping
multiple C declarations</h3>
If you have a series of declarations that all begin with <span style="font-family: monospace;">cdef</span>, you can
group them into a cdef block like this:<br>
<pre style="margin-left: 40px;">cdef:<br><br> struct Spam:<br> int tons<br><br> int i<br> float f<br> Spam *p<br><br> void f(Spam *s):<br> print s.tons, "Tons of spam"<br> </pre>
<h2><a class="mozTocH2" name="mozTocId763321"></a><a name="AutomaticTypeConversions"></a>Automatic
type conversions</h2>
In most situations, automatic conversions will be performed for the
basic numeric and string types when a Python object is used in a
context requiring a C value, or vice versa. The following table
summarises the conversion possibilities.<br>
<br>
<table style="text-align: left; background-color: rgb(204, 255, 255); width: 10%; margin-left: 40px;" border="1" cellpadding="4" cellspacing="0">
<tbody>
<tr>
<th style="vertical-align: top; width: 40%; white-space: nowrap; background-color: rgb(255, 204, 51);">C
types<br>
</th>
<th style="vertical-align: top; width: 150px; white-space: nowrap; background-color: rgb(255, 204, 51);">From
Python types<br>
</th>
<th style="vertical-align: top; width: 150px; white-space: nowrap; background-color: rgb(255, 204, 51);">To
Python types<br>
</th>
</tr>
<tr>
<td colspan="1" rowspan="1" style="vertical-align: top; width: 40%; white-space: nowrap;">[unsigned]
char<br>
[unsigned] short<br>
int, long</td>
<td colspan="1" rowspan="1" style="vertical-align: top; width: 150px; white-space: nowrap;">int,
long<br>
</td>
<td colspan="1" rowspan="1" style="vertical-align: top; width: 150px; white-space: nowrap;">int<br>
</td>
</tr>
<tr>
</tr>
<tr>
<td colspan="1" rowspan="1" style="vertical-align: top; width: 40%; white-space: nowrap;">unsigned
int<br>
unsigned long<br>
[unsigned] long long<br>
</td>
<td colspan="1" rowspan="1" style="vertical-align: top; white-space: nowrap;">int, long<br>
<br>
</td>
<td colspan="1" rowspan="1" style="vertical-align: top; white-space: nowrap;">long<br>
<br>
</td>
</tr>
<tr>
</tr>
<tr>
<td style="vertical-align: top; width: 40%; white-space: nowrap;">float,
double, long double<br>
</td>
<td style="vertical-align: top; width: 150px; white-space: nowrap;">int,
long, float<br>
</td>
<td style="vertical-align: top; width: 150px; white-space: nowrap;">float<br>
</td>
</tr>
<tr>
<td style="vertical-align: top; width: 40%; white-space: nowrap;">char
*<br>
</td>
<td style="vertical-align: top; width: 150px; white-space: nowrap;">str<span style="font-style: italic;"></span><br>
</td>
<td style="vertical-align: top; width: 150px; white-space: nowrap;">str<br>
</td>
</tr>
</tbody>
</table>
<br>
<h3><a class="mozTocH3" name="mozTocId440941"></a><a name="PyToCStringCaveats"></a>Caveats
when using a Python string in a C context</h3>
You need to be careful when using a Python string in a context
expecting a <span style="font-family: monospace;">char *</span>.
In this situation, a pointer to the contents of the Python string is
used, which is only valid as long as the Python string exists. So you
need to make sure that a reference to the original Python string is
held for as long as the C string is needed. If you can't guarantee that
the Python string will live long enough, you will need to copy the C
string.<br>
<br>
Pyrex detects and prevents <span style="font-style: italic;">some</span>
mistakes of
this kind. For instance, if you attempt something like<br>
<pre style="margin-left: 40px;">cdef char *s<br>s = pystring1 + pystring2</pre>
then
Pyrex will produce the error message "<span style="font-weight: bold;">Obtaining char * from temporary
Python value</span>".
The reason is that concatenating the two Python strings produces a new
Python string object that is referenced only by a temporary internal
variable that Pyrex generates. As soon as the statement has finished,
the temporary variable will be decrefed and the Python string
deallocated, leaving <span style="font-family: monospace;">s</span>
dangling. Since this code could not possibly work, Pyrex refuses to
compile it.<br>
<br>
The solution is to assign the result of the concatenation to
a Python variable, and then obtain the char * from that, i.e.<br>
<pre style="margin-left: 40px;">cdef char *s<br>p = pystring1 + pystring2<br>s = p<br></pre>
It
is then your responsibility to hold the reference <span style="font-family: monospace;">p</span> for as long
as necessary.<br>
<br>
Keep in mind that the rules used to detect such errors are
only
heuristics. Sometimes Pyrex will complain unnecessarily, and sometimes
it will fail to detect a problem that exists. Ultimately, you need to
understand the issue and be careful what you do.
<h2><a class="mozTocH2" name="mozTocId834148"></a><a name="ScopeRules"></a>Scope rules</h2>
Pyrex
determines whether a variable belongs to a local scope, the module
scope, or the built-in scope <i>completely statically.</i>
As with Python, assigning to a variable which is not otherwise declared
implicitly declares it to be a Python variable residing in the scope
where it is assigned. Unlike Python, however, a name which is referred
to but not declared or assigned is assumed to reside in the <i>builtin
scope, </i>not the module scope.
Names added to the module dictionary at run time will not shadow such
names.<br>
<br>
This can result in some odd things happening under rare circumstances,
for example<br>
<br>
<div style="margin-left: 40px;"><tt>print __name__</tt></div>
<p>In
Pyrex, instead of printing the name of the current module, this prints
the name of the builtins module. The reason is that because Pyrex
hasn't seen a declaration of anything called <span style="font-family: monospace;">__name__</span> in the
module, it's assumed to reside in the builtins. The solution is to use
a <span style="font-weight: bold;">global</span>
statement to declare <span style="font-family: monospace;">__name__</span>
as a module-level name:</p>
<p style="margin-left: 40px;"><tt>global
__name__</tt><tt><br>
print __name__</tt></p>
Another
consequence of these rules is that the module-level scope behaves the
same way as a Python local scope if you refer to a variable before
assigning to it. In particular, tricks such as the following will <i>not</i>
work
in Pyrex:<br>
<blockquote>
<pre>try:<br>&nbsp; x = True<br>except NameError:<br>&nbsp; True = 1<br></pre>
</blockquote>
because, due to the assignment in the last line, <span style="font-family: monospace;">True</span> will
always be looked up in the module-level scope. You would have to do
something like this instead:<br>
<blockquote>
<pre>import __builtin__<br>try:<br> True = __builtin__.True<br>except AttributeError:<br> True = 1<br></pre>
</blockquote>
<hr width="100%">
<h2><a class="mozTocH2" name="mozTocId954330"></a><a name="StatsAndExprs"></a>Statements and
expressions</h2>
Control structures and expressions follow Python syntax for the most
part. When applied to Python objects, they have the same semantics as
in Python (unless otherwise noted). Most of the Python operators can
also be applied to C values, with the obvious semantics.
<p>If
Python objects and C values are mixed in an expression, conversions are
performed automatically between Python objects and C numeric or string
types. </p>
<p>Reference counts are maintained
automatically for all Python objects, and
all Python operations are automatically checked for errors, with
appropriate action taken. </p>
<h3><a class="mozTocH3" name="mozTocId401576"></a>
<a name="ExprSyntaxDifferences"></a>Differences
between C
and Pyrex
expressions</h3>
There
are some differences in syntax and semantics between C expressions and
Pyrex expressions, particularly in the area of C constructs which have
no direct equivalent in Python.<br>
<ul>
<li>An integer literal without an <span style="font-family: monospace; font-weight: bold;">L</span>
suffix is treated as a C constant, and will be truncated to whatever
size your C compiler thinks appropriate. With an <span style="font-family: monospace; font-weight: bold;">L</span>
suffix, it will be converted to Python long integer (even if it would
be small enough to fit into a C int).<br>
<br>
</li>
<li>There is no <b><tt>-&gt;</tt></b>
operator
in Pyrex. Instead of <tt>p-&gt;x</tt>, use <tt>p.x</tt></li>
&nbsp; <li> There is no <b><tt>*</tt></b>
operator in Pyrex. Instead of <tt>*p</tt>, use <tt>p[0]</tt></li>
&nbsp; <li> There is an <b><tt>&amp;</tt></b>
operator, with the same semantics as in C.</li>
&nbsp; <li>
The null C pointer is called <b><tt>NULL</tt></b>,
not 0 (and <tt>NULL</tt> is a reserved word).</li>
&nbsp; <li> Character literals are written with a <b>c</b>
prefix, for
example:</li>
<ul>
<pre>c'X'</pre>
</ul>
<li>Type casts are written <b><tt>&lt;type&gt;value</tt></b>
, for example:</li>
<ul>
<pre>cdef char *p, float *q<br>p = &lt;char*&gt;q</pre>
</ul>
<i><b>Warning</b>:
Don't attempt to use a typecast to convert between
Python and C data types -- it won't do the right thing. Leave Pyrex to
perform the conversion automatically.</i>
</ul>
<h4>Operator Precedence</h4>
Keep in mind that there are
some differences
in operator precedence between Python and C, and that Pyrex uses the
Python precedences, not the C ones.
<h3><a class="mozTocH3" name="mozTocId899067"></a>Integer
for-loops</h3>
You should be aware that a for-loop such as
<blockquote><tt>for
i in range(n):</tt> <br>
<tt>&nbsp;&nbsp;&nbsp;
...</tt></blockquote>
won't be very fast, even if <tt>i</tt>
and <tt>n</tt> are declared as
C integers, because <tt>range</tt> is a Python function.
For iterating over ranges of integers, Pyrex has another form of
for-loop:
<blockquote><tt>for 0 &lt;= i
&lt; n:</tt> <br>
<tt>&nbsp;&nbsp;&nbsp;
...</tt></blockquote>
Provided the loop variable and the lower
and upper bounds are all C integers, this form of loop will be much
faster, because Pyrex will translate it into pure C code.
<p>Some
things to note about the integer for-loop: </p>
<ul>
<li> The target expression (the middle one) must be a variable
name.</li>
<li>The direction of iteration is
determined by the relations. If they are both from the set {<tt>&lt;</tt>,
<tt>&lt;=</tt>} then it is upwards; if they are
both
from the set {<tt>&gt;</tt>, <tt>&gt;=</tt>}
then it is
downwards. (Any other combination is disallowed.)</li>
</ul>
Like other Python looping statements, <tt>break</tt> and <tt>continue</tt>
may be used in the body, and the loop may have an <tt>else</tt>
clause.
<h3><a class="mozTocH3" name="mozTocId457396"></a>Catching
exceptions and tracebacks</h3>
For
reasons of efficiency, there are some differences between Pyrex and
Python concerning the way exceptions caught by a try-except statement
are handled.<br>
<ul>
<li>Exceptions caught by an <span style="font-family: monospace;">except</span> clause <span style="font-style: italic;">cannot</span> be retrieved
using <span style="font-family: monospace;">sys.exc_info()</span>.
To access the caught exception, you must bind it to a name in the
except clause.<br><br>Pyrex also allows an additional name to be provided for
catching the traceback. For example,</li>
</ul>
<pre style="margin-left: 80px;">try:<br>&nbsp;&nbsp;&nbsp; start_engine()<br>except HovercraftError, e, tb:<br>&nbsp;&nbsp;&nbsp; print "Got an error:", e<br>&nbsp;&nbsp;&nbsp; traceback.print_tb(tb)</pre>
<ul>
<li>A <span style="font-family: monospace;">raise</span>
statement with no arguments (to re-raise the last exception caught)
must be lexically enclosed in the <span style="font-family: monospace;">except</span> clause
which caught the exception. A raise statement in a Python function
called from the except clause will <span style="font-style: italic;">not</span>
work.</li>
</ul>
<pre style="margin-left: 80px;">try:<br> start_engine()<br>except HovercraftError, e:<br> print "Unable to start:", e<br> raise # the exception caught by the enclosing except clause</pre>
<h2><a class="mozTocH2" name="mozTocId329136"></a>
<hr width="100%"></h2>
<h2><a class="mozTocH2" name="mozTocId482761"></a><a name="ExceptionValues"></a>Error return values</h2>
If you don't do anything special, a function declared with <b>cdef</b>
that does not return a Python object has no way of reporting Python
exceptions to its caller. If an exception is detected in such a
function, a warning message is printed and the exception is ignored.
<p>If
you want a C function that does not return a Python object to be able
to propagate exceptions to its caller, you need to declare an <b>exception
value</b> for it. Here is an example: </p>
<blockquote><tt>cdef
int spam() except -1:</tt> <br>
<tt>&nbsp;&nbsp;&nbsp;
...</tt></blockquote>
With this declaration, whenever an
exception occurs inside <tt>spam</tt>, it will immediately
return with the value <tt>-1</tt>. Furthermore, whenever a
call to <tt>spam</tt> returns <tt>-1</tt>, an
exception will be assumed to have occurred and will be propagated.
<p>When
you declare an exception value for a function, you should never
explicitly return that value. If all possible return values are legal
and you can't
reserve one entirely for signalling errors, you can use an alternative
form
of exception value declaration: </p>
<blockquote><tt>cdef
int spam() except? -1:</tt> <br>
<tt>&nbsp;&nbsp;&nbsp;
...</tt></blockquote>
The "?" indicates that the value <tt>-1</tt>
only indicates a <i>possible</i> error. In this case,
Pyrex generates a call to <tt>PyErr_Occurred</tt> if the
exception value is returned, to make sure it really is an error.
<p>There
is also a third form of exception value declaration: </p>
<blockquote><tt>cdef
int spam() except *:</tt> <br>
<tt>&nbsp;&nbsp;&nbsp;
...</tt></blockquote>
This form causes Pyrex to generate a
call to <tt>PyErr_Occurred</tt> after <i>every</i>
call to <code>spam</code>, regardless of what value it
returns. If you have a function returning <tt>void</tt>
that needs to propagate errors, you will have to use this form, since
there isn't any return value to test.
<p>Some things to note: </p>
<ul>
<li>Exception values can only declared for functions
returning an integer, enum, float or pointer type, and the value must
be a constant expression. The only possible pointer exception value is <tt>NULL</tt>.
Void functions can only use the <tt>except *</tt> form.</li>
&nbsp; <li> The exception value specification is part of the
signature
of the function. If you're passing a pointer to a function as a
parameter
or assigning it to a variable, the declared type of the parameter or
variable must have the same exception value specification (or lack
thereof). Here
is an example of a pointer-to-function declaration with an exception
value:</li>
<ul>
<pre><tt>int (*grail)(int, char *) except -1</tt></pre>
</ul>
<li>You don't need to (and shouldn't) declare exception values
for
functions which return Python objects. Remember that a function with no
declared return type implicitly returns a Python object.</li>
</ul>
<h3><a class="mozTocH3" name="mozTocId622828"></a>
<a name="CheckingReturnValues"></a>Checking
return values of non-Pyrex functions</h3>
It's important to
understand that the <tt>except</tt> clause does <i>not</i>
cause an error to be <i>raised</i> when the specified
value is returned. For
example, you can't write something like
<blockquote>
<pre>cdef extern FILE *fopen(char *filename, char *mode) except NULL <font color="#ed181e"># WRONG!</font></pre>
</blockquote>
and expect an exception to be automatically raised if a call to fopen
returns NULL. The except clause doesn't work that way; its only purpose
is for <i>propagating</i> exceptions that have already
been raised, either
by a Pyrex function or a C function that calls Python/C API routines.
To
get an exception from a non-Python-aware function such as fopen, you
will
have to check the return value and raise it yourself, for example,
<blockquote>
<pre>cdef FILE *p<br>p = fopen("spam.txt", "r")<br>if p == NULL:<br>&nbsp;&nbsp;&nbsp; raise SpamError("Couldn't open the spam file")</pre>
</blockquote>
<h4>
<hr width="100%"></h4>
<h2><a class="mozTocH2" name="mozTocId494354"></a>
<a name="IncludeStatement"></a>The <tt>include</tt>
statement</h2>
A&nbsp;Pyrex source file can include material from other files
using the <b>include</b>
statement, for example
<blockquote>
<pre>include "spamstuff.pxi"</pre>
</blockquote>
The contents of the named file are textually
included at that point. The included file can contain any complete
statements or declarations that are valid in the context where the
include statement appears, including other <b>include</b>
statements. The contents of the included file should begin at an
indentation level of zero, and will be treated as though they were
indented to the level of the include statement that is including the
file.<br>
<br>
Note
that there are other mechanisms available for splitting Pyrex code into
separate parts that may be more appropriate in many cases. See<a href="sharing.html"> Sharing Declarations Between
Pyrex Modules</a>.<br>
<hr style="width: 100%; height: 2px;">
<h2><a class="mozTocH2" name="mozTocId849661"></a><a name="KeywordOnlyArguments"></a>Keyword-only arguments</h2>
<p>Python
functions can have keyword-only arguments listed after the * parameter
and before the ** paramter if any, e.g.</p>
<pre style="margin-left: 40px;">def f(a, b, *args, c, d = 42, e, **kwds):<br> ...<br></pre>
Here
c, d and e cannot be passed as position arguments and must be passed as
keyword arguments. Furthermore, c and e are required keyword arguments,
since they do not have a default value.<br>
<br>
If the
parameter name after the * is omitted, the function will not accept any
extra positional arguments, e.g.<br>
<br>
<pre style="margin-left: 40px;">def g(a, b, *, c, d):<br> ...<br></pre>
takes
exactly two positional parameters and has two required keyword
parameters.<br>
<br>
<hr style="width: 100%; height: 2px;">
<h2><a class="mozTocH2" name="mozTocId829237"></a><a name="Built-in_Names"></a>Built-in Names</h2>
Pyrex
knows about many of the names in the builtin namespace, and treats them
specially in the interests of generating efficient code.<br>
<h3><a class="mozTocH3" name="mozTocId813519"></a><a name="Built-in_Constants"></a>Built-in Constants</h3>
Pyrex
knows the following built-in constant and type names, and references
their values directly instead of using a dictionary lookup.<br>
<br>
<table style="background-color: rgb(204, 255, 255); width: 10px; margin-left: 40px;" border="1" cellpadding="5" cellspacing="0">
<tbody>
<tr>
<td style="vertical-align: top; white-space: nowrap; text-align: left; background-color: rgb(255, 204, 0);">Type
objects (type <span style="font-family: monospace;">type</span>)</td>
<td colspan="2" rowspan="1" style="vertical-align: top; white-space: nowrap; text-align: left; background-color: rgb(255, 204, 0);">Exceptions
(type <span style="font-family: monospace;">type</span>)</td>
</tr>
<tr>
<td style="vertical-align: top; white-space: nowrap; text-align: left; height: 10px;">buffer<br>
enumerate<br>
file<br>
float<br>
int<br>
long<br>
open<br>
property<br>
str<br>
tuple<br>
xrange</td>
<td colspan="1" rowspan="3" align="left" nowrap="nowrap" valign="top">Exception<br>
StopIteration<br>
StandardError<br>
ArithmeticError<br>
LookupError<br>
AsssertionError<br>
EOFError<br>
FloatingPointError<br>
EnvironmentError<br>
IOError<br>
OSError<br>
ImportError<br>
IndexError<br>
KeyError<br>
KeyboardInterrupt<br>
MemoryError<br>
NameError<br>
OverflowError<br>
RuntimeError<br>
NotImplementedError<br>
SyntaxError</td>
<td colspan="1" rowspan="3" style="vertical-align: top; white-space: nowrap; text-align: left;">IndentationError<br>
TabError<br>
ReferenceError<br>
SystemError<br>
SystemExit<br>
TypeError<br>
UnboundLocalError<br>
UnicodeError<br>
UnicodeEncodeError<br>
UnicodeDecodeError<br>
UnicodeTranslateError<br>
ValueError<br>
ZeroDivisionError<br>
Warning<br>
UserWarning<br>
DeprecationWarning<br>
PendingDeprecationWarning<br>
SyntaxWarning<br>
OverflowWarning<br>
RuntimeWarning<br>
FutureWarning</td>
</tr>
<tr>
<td style="vertical-align: top; white-space: nowrap; text-align: left; height: 10px; background-color: rgb(255, 204, 0);">Constants
(type <span style="font-family: monospace;">object</span>)</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">True<br>
False<br>
Ellipsis</td>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
<tr>
</tr>
</tbody>
</table>
<br>
Note that although some of the above names refer to type objects, they
are not Pyrex type names and therefore can't be used to declare the
type of a variable. Only the names listed under Built-in Types below
can be used as type names in declarations.<br>
<h3><a class="mozTocH3" name="mozTocId593628"></a><a name="Built-in_Functions"></a>Built-in Functions</h3>
Pyrex
compiles calls to the following built-in functions into direct calls to
the corresponding Python/C API routines, making them particularly fast.<br>
<br>
<table style="text-align: left; background-color: rgb(204, 255, 255); margin-left: 40px;" border="1" cellpadding="4" cellspacing="0">
<tbody>
<tr>
<td style="font-weight: bold; background-color: rgb(255, 204, 51);">Function
and arguments</td>
<td style="font-weight: bold; background-color: rgb(255, 204, 51);">Return
type</td>
<td style="font-weight: bold; white-space: nowrap; background-color: rgb(255, 204, 51);">Python/C
API Equivalent</td>
</tr>
<tr>
<td>abs(obj)</td>
<td>object</td>
<td>PyNumber_Absolute</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">bool(obj)
&nbsp; <span style="font-style: italic;">(Note 3)</span></td>
<td align="left" nowrap="nowrap" valign="top">int</td>
<td align="left" nowrap="nowrap" valign="top">PyObject_IsTrue</td>
</tr>
<tr>
<td>delattr(obj,&nbsp;name)</td>
<td>int</td>
<td>PyObject_DelAttr</td>
</tr>
<tr>
<td>dir(obj)</td>
<td>object</td>
<td>PyObject_Dir</td>
</tr>
<tr>
<td>divmod(x, y)</td>
<td>object</td>
<td>PyNumber_Divmod</td>
</tr>
<tr>
<td style="white-space: nowrap;">getattr(obj,&nbsp;name)
<span style="font-style: italic;">&nbsp; (Note 1</span>)<br>
getattr3(obj, name, default)</td>
<td>object</td>
<td>PyObject_GetAttr</td>
</tr>
<tr>
<td>hasattr(obj, name)</td>
<td>int</td>
<td>PyObject_HasAttr</td>
</tr>
<tr>
<td>hash(obj)</td>
<td>int</td>
<td>PyObject_Hash</td>
</tr>
<tr>
<td>cintern(char *)<span style="font-style: italic;">
&nbsp; (Note 5)</span></td>
<td>object</td>
<td>PyString_InternFromString</td>
</tr>
<tr>
<td>isinstance(obj, type)</td>
<td>int</td>
<td>PyObject_IsInstance</td>
</tr>
<tr>
<td>issubclass(obj, type)</td>
<td>int</td>
<td>PyObject_IsSubclass</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">issubtype(type,
type) &nbsp; <span style="font-style: italic;">(Note 4</span>)</td>
<td align="left" nowrap="nowrap" valign="top">int</td>
<td align="left" nowrap="nowrap" valign="top">PyType_IsSubType</td>
</tr>
<tr>
<td>iter(obj)</td>
<td>object</td>
<td>PyObject_GetIter</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">iter2(obj,
obj)</td>
<td align="left" nowrap="nowrap" valign="top">object</td>
<td align="left" nowrap="nowrap" valign="top">PyCallIter_New</td>
</tr>
<tr>
<td>len(obj)</td>
<td>Py_ssize_t</td>
<td>PyObject_Length</td>
</tr>
<tr>
<td style="width: 1px;">pow(x, y, z) <span style="font-style: italic;">&nbsp; (Note 2)</span></td>
<td style="width: 1px;">object</td>
<td style="width: 1px;">PyNumber_Power</td>
</tr>
<tr>
<td>reload(obj)</td>
<td>object</td>
<td>PyImport_ReloadModule</td>
</tr>
<tr>
<td>repr(obj)</td>
<td>object</td>
<td>PyObject_Repr</td>
</tr>
<tr>
<td style="width: 200px;">setattr(obj,&nbsp;name)</td>
<td style="width: 100px;">void</td>
<td style="width: 150px;">PyObject_SetAttr</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">typecheck(obj,
type) &nbsp; <span style="font-style: italic;">(Note
4)</span></td>
<td align="left" nowrap="nowrap" valign="top">int</td>
<td align="left" nowrap="nowrap" valign="top">PyObject_TypeCheck</td>
</tr>
</tbody>
</table>
<br>
<div style="margin-left: 40px;"><span style="font-style: italic;">Note 1:</span> There are
two different functions corresponding to the Python <span style="font-family: monospace;">getattr</span>
depending on whether a third argument is used. In a non-call context,
they both evaluate to the Python <span style="font-family: monospace;">getattr</span>
function.<br>
<br>
<span style="font-style: italic;">Note 2:</span>
Only the three-argument form of <span style="font-family: monospace;">pow()</span> is
supported. Use the <span style="font-family: monospace;">**</span>
operator otherwise.<br>
<br>
<span style="font-style: italic;">Note 3:</span> In
a non-call context, the name <span style="font-family: monospace;">bool</span>
refers to the Python built-in bool type.<br>
<br>
<span style="font-style: italic;">Note 4:</span> The
functions <span style="font-family: monospace;">typecheck</span>
and <span style="font-family: monospace;">issubtype</span>
have no exact Python equivalent. They are included for fast, safe type
checking of extension types. They are safer than using <span style="font-family: monospace;">isinstance</span> and <span style="font-family: monospace;">issubclass</span>
for this purpose, because the behaviour of the latter functions can be
overridden, so they don't necessarily reflect the true C types of the
objects involved.<br>
<br>
<span style="font-style: italic;">Note 5:</span>
This function is named <span style="font-family: monospace;">cintern</span>
instead of <span style="font-family: monospace;">intern</span>
because it takes a null-terminated C string rather than a Python
string, and therefore cannot handle strings containing null bytes.<br>
</div>
<br>
Only
direct function calls using these names are optimised. If you do
something else with one of these names that assumes it's a Python
object, such as assign it to a Python variable, and later call it, the
call will be made as a Python function call.
<h3><a class="mozTocH3" name="mozTocId452377"></a><a name="BuiltinTypes"></a>Built-in Types</h3>
Pyrex
knows about the following builtin
types:<br>
<br>
<div style="margin-left: 40px;"><span style="font-family: monospace;">dict</span><br style="font-family: monospace;">
<span style="font-family: monospace;">list</span><br>
<span style="font-family: monospace;">object</span><br style="font-family: monospace;">
<span style="font-family: monospace;">slice</span><br style="font-family: monospace;">
<span style="font-family: monospace;">type</span><br>
</div>
<br>
If you declare a variable as being of one of these types, then
calls to the methods in the table below will be compiled to direct
Python/C API calls,
avoiding the overhead of a Python attribute lookup and function call.
In the case of attributes, they will be accessed directly from the
object's C struct.<br>
<br>
Referring to the types themselves is also
slightly more efficient, because the relevant type object is accessed
directly rather than via a global variable lookup.<br>
<br>
<table style="text-align: left; background-color: rgb(204, 255, 255); width: 665px; height: 330px;" border="1" cellpadding="4" cellspacing="0">
<tbody>
<tr>
<td style="font-weight: bold; background-color: rgb(255, 204, 51);">Method
or Attribute</td>
<td style="font-weight: bold; background-color: rgb(255, 204, 51);">Return
type</td>
<td colspan="1" rowspan="1" style="font-weight: bold; white-space: nowrap; background-color: rgb(255, 204, 51);">Python/C
API Equivalent</td>
<td style="background-color: rgb(255, 204, 51); font-weight: bold;" align="left" nowrap="nowrap">Notes</td>
</tr>
<tr>
<td colspan="4" rowspan="1" style="vertical-align: top; white-space: nowrap; text-align: left; background-color: rgb(51, 153, 153);"><span style="font-weight: bold;">Type </span><span style="font-family: monospace; font-weight: bold;">dict</span></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">clear()</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top">PyDict_Clear</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">copy()</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top">PyDict_Copy</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">items()</td>
<td align="left" nowrap="nowrap" valign="top">object</td>
<td align="left" nowrap="nowrap" valign="top">PyDict_Items</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">keys()</td>
<td align="left" nowrap="nowrap" valign="top">object</td>
<td align="left" nowrap="nowrap" valign="top">PyDict_Keys</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">values()</td>
<td align="left" nowrap="nowrap" valign="top">object</td>
<td align="left" nowrap="nowrap" valign="top">PyDict_Values</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">merge(obj,
override)</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top">PyDict_Merge</td>
<td align="left" nowrap="nowrap" valign="top">Merge
items from a mapping</td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">update(obj)</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top">PyDict_Update</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">merge_pairs(obj,&nbsp;override)</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top">PyDict_MergeFromSeq2</td>
<td align="left" nowrap="nowrap" valign="top">Merge
(key, value) pairs from a sequence</td>
</tr>
<tr>
<td colspan="4" rowspan="1" style="vertical-align: top; white-space: nowrap; text-align: left; background-color: rgb(51, 153, 153);"><span style="font-weight: bold;">Type </span><span style="font-family: monospace; font-weight: bold;">list</span></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">insert(int,
obj)</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top">PyList_Insert</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">append(obj)</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top">PyList_Append</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">sort()</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top">PyList_Sort</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">reverse()</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top">PyList_Reverse</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">as_tuple()</td>
<td align="left" nowrap="nowrap" valign="top">object</td>
<td align="left" nowrap="nowrap" valign="top">PyList_AsTuple</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td colspan="4" rowspan="1" style="vertical-align: top; white-space: nowrap; text-align: left; background-color: rgb(51, 153, 153);"><span style="font-weight: bold;">Type <span style="font-family: monospace;">slice</span></span></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">indices()</td>
<td align="left" nowrap="nowrap" valign="top">object</td>
<td align="left" nowrap="nowrap" valign="top">PySlice_Indices</td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">start</td>
<td align="left" nowrap="nowrap" valign="top">object</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">stop</td>
<td align="left" nowrap="nowrap" valign="top">object</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
<tr>
<td align="left" nowrap="nowrap" valign="top">step</td>
<td align="left" nowrap="nowrap" valign="top">object</td>
<td align="left" nowrap="nowrap" valign="top"></td>
<td align="left" nowrap="nowrap" valign="top"></td>
</tr>
</tbody>
</table>
<br>
Some
of the above methods have no direct Python equivalent, but are there to
provide access to routines that exist in the Python/C API.<br>
<br>
As an example, the following compiles into code containing no Python
attribute lookups or function calls.<br>
<br>
<div style="margin-left: 40px;"><span style="font-family: monospace;">cdef list cheeses</span><br style="font-family: monospace;">
<span style="font-family: monospace;">cheeses = []</span><br style="font-family: monospace;">
<span style="font-family: monospace;">cheeses.append("camembert")</span><br style="font-family: monospace;">
<span style="font-family: monospace;">cheeses.append("cheddar")</span><br style="font-family: monospace;">
<span style="font-family: monospace;">cheeses.insert(1,
"something runny")</span><br style="font-family: monospace;">
</div>
<br>
<hr style="width: 100%; height: 2px;">
<h2><a class="mozTocH2" name="mozTocId42018"></a><a name="Conditional_Compilation"></a>Conditional
Compilation</h2>
Some features are available for conditional compilation and
compile-time constants within a Pyrex source file.<br>
<h3><a class="mozTocH3" name="mozTocId379306"></a><a name="Compile-Time_Definitions"></a>Compile-Time
Definitions</h3>
A compile-time constant can be defined using the <span style="font-family: monospace; font-weight: bold;">DEF</span>
statement:<br>
<pre style="margin-left: 40px;">DEF FavouriteFood = "spam"<br>DEF ArraySize = 42<br>DEF OtherArraySize = 2 * ArraySize + 17</pre>
The
right-hand side of the DEF must be a valid compile-time expression.
Such expressions are made up of literal values and names defined using
DEF statements, combined using any of the Python expression syntax.<br>
<br>
The following compile-time names are predefined, corresponding to the
values returned by <span style="font-weight: bold;">os.uname()</span>.<br>
<pre style="margin-left: 40px;">UNAME_SYSNAME, UNAME_NODENAME, UNAME_RELEASE,<br>UNAME_VERSION, UNAME_MACHINE</pre>
The following selection of builtin constants and functions are also
available:<br>
<pre style="margin-left: 40px;">None, True, False,<br>abs, bool, chr, cmp, complex, dict, divmod, enumerate,<br>float, hash, hex, int, len, list, long, map, max, min,<br>oct, ord, pow, range, reduce, repr, round, slice, str,<br>sum, tuple, xrange, zip</pre>
A
name defined using DEF can be used anywhere an identifier can appear,
and it is replaced with its compile-time value as though it were
written into the source at that point as a literal. For this to work,
the compile-time expression must evaluate to a Python value of type <span style="font-weight: bold;">int</span>, <span style="font-weight: bold;">long</span>, <span style="font-weight: bold;">float </span>or <span style="font-weight: bold;">str</span>.<br>
<pre style="margin-left: 40px;">cdef int a1[ArraySize]<br>cdef int a2[OtherArraySize]<br>print "I like", FavouriteFood</pre>
<h3><a class="mozTocH3" name="mozTocId997015"></a><a name="Conditional_Statements"></a>Conditional
Statements</h3>
The <span style="font-family: monospace; font-weight: bold;">IF</span>
statement can be used to conditionally include or exclude sections of
code at compile time. It works in a similar way to the <span style="font-weight: bold;">#if</span> preprocessor
directive in C.<br>
<pre style="margin-left: 40px;">IF UNAME_SYSNAME == "Windows":<br> include "icky_definitions.pxi"<br>ELIF UNAME_SYSNAME == "Darwin":<br> include "nice_definitions.pxi"<br>ELIF UNAME_SYSNAME == "Linux":<br> include "penguin_definitions.pxi"<br>ELSE:<br> include "other_definitions.pxi"</pre>
The
ELIF and ELSE clauses are optional. An IF statement can appear anywhere
that a normal statement or declaration can appear, and it can contain
any statements or declarations that would be valid in that context,
including DEF statements and other IF statements.<br>
<br>
The
expressions in the IF and ELIF clauses must be valid compile-time
expressions as for the DEF statement, although they can evaluate to any
Python value, and the truth of the result is determined in the usual
Python way.<br>
<br>
---
</body></html>