// // Copyright (C) 2002 RealVNC Ltd. All Rights Reserved. // // This is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This software is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this software; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // // zrleEncode.h - zrle encoding function. // // Before including this file, you must define a number of CPP macros. // // BPP should be 8, 16 or 32 depending on the bits per pixel. // GET_IMAGE_INTO_BUF should be some code which gets a rectangle of pixel data // into the given buffer. EXTRA_ARGS can be defined to pass any other // arguments needed by GET_IMAGE_INTO_BUF. // // Note that the buf argument to ZRLE_ENCODE needs to be at least one pixel // bigger than the largest tile of pixel data, since the ZRLE encoding // algorithm writes to the position one past the end of the pixel data. // #include #include using namespace rdr; /* __RFB_CONCAT2 concatenates its two arguments. __RFB_CONCAT2E does the same but also expands its arguments if they are macros */ #ifndef __RFB_CONCAT2E #define __RFB_CONCAT2(a,b) a##b #define __RFB_CONCAT2E(a,b) __RFB_CONCAT2(a,b) #endif #ifdef CPIXEL #define PIXEL_T __RFB_CONCAT2E(rdr::U,BPP) #define WRITE_PIXEL __RFB_CONCAT2E(writeOpaque,CPIXEL) #define ZRLE_ENCODE __RFB_CONCAT2E(zrleEncode,CPIXEL) #define ZRLE_ENCODE_TILE __RFB_CONCAT2E(zrleEncodeTile,CPIXEL) #define BPPOUT 24 #else #define PIXEL_T __RFB_CONCAT2E(rdr::U,BPP) #define WRITE_PIXEL __RFB_CONCAT2E(writeOpaque,BPP) #define ZRLE_ENCODE __RFB_CONCAT2E(zrleEncode,BPP) #define ZRLE_ENCODE_TILE __RFB_CONCAT2E(zrleEncodeTile,BPP) #define BPPOUT BPP #endif #ifndef ZRLE_ONCE #define ZRLE_ONCE static const int bitsPerPackedPixel[] = { 0, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 }; // The PaletteHelper class helps us build up the palette from pixel data by // storing a reverse index using a simple hash-table class PaletteHelper { public: enum { MAX_SIZE = 127 }; PaletteHelper() { memset(index, 255, sizeof(index)); size = 0; } inline int hash(rdr::U32 pix) { return (pix ^ (pix >> 17)) & 4095; } inline void insert(rdr::U32 pix) { if (size < MAX_SIZE) { int i = hash(pix); while (index[i] != 255 && key[i] != pix) i++; if (index[i] != 255) return; index[i] = size; key[i] = pix; palette[size] = pix; } size++; } inline int lookup(rdr::U32 pix) { assert(size <= MAX_SIZE); int i = hash(pix); while (index[i] != 255 && key[i] != pix) i++; if (index[i] != 255) return index[i]; return -1; } rdr::U32 palette[MAX_SIZE]; rdr::U8 index[4096+MAX_SIZE]; rdr::U32 key[4096+MAX_SIZE]; int size; }; #endif void ZRLE_ENCODE_TILE (PIXEL_T* data, int w, int h, rdr::OutStream* os); void ZRLE_ENCODE (int x, int y, int w, int h, rdr::OutStream* os, rdr::ZlibOutStream* zos, void* buf EXTRA_ARGS ) { zos->setUnderlying(os); for (int ty = y; ty < y+h; ty += rfbZRLETileHeight) { int th = rfbZRLETileHeight; if (th > y+h-ty) th = y+h-ty; for (int tx = x; tx < x+w; tx += rfbZRLETileWidth) { int tw = rfbZRLETileWidth; if (tw > x+w-tx) tw = x+w-tx; GET_IMAGE_INTO_BUF(tx,ty,tw,th,buf); ZRLE_ENCODE_TILE((PIXEL_T*)buf, tw, th, zos); } } zos->flush(); } void ZRLE_ENCODE_TILE (PIXEL_T* data, int w, int h, rdr::OutStream* os) { // First find the palette and the number of runs PaletteHelper ph; int runs = 0; int singlePixels = 0; PIXEL_T* ptr = data; PIXEL_T* end = ptr + h * w; *end = ~*(end-1); // one past the end is different so the while loop ends while (ptr < end) { PIXEL_T pix = *ptr; if (*++ptr != pix) { singlePixels++; } else { while (*++ptr == pix) ; runs++; } ph.insert(pix); } //fprintf(stderr,"runs %d, single pixels %d, paletteSize %d\n", // runs, singlePixels, ph.size); // Solid tile is a special case if (ph.size == 1) { os->writeU8(1); os->WRITE_PIXEL(ph.palette[0]); return; } // Try to work out whether to use RLE and/or a palette. We do this by // estimating the number of bytes which will be generated and picking the // method which results in the fewest bytes. Of course this may not result // in the fewest bytes after compression... bool useRle = false; bool usePalette = false; int estimatedBytes = w * h * (BPPOUT/8); // start assuming raw int plainRleBytes = ((BPPOUT/8)+1) * (runs + singlePixels); if (plainRleBytes < estimatedBytes) { useRle = true; estimatedBytes = plainRleBytes; } if (ph.size < 128) { int paletteRleBytes = (BPPOUT/8) * ph.size + 2 * runs + singlePixels; if (paletteRleBytes < estimatedBytes) { useRle = true; usePalette = true; estimatedBytes = paletteRleBytes; } if (ph.size < 17) { int packedBytes = ((BPPOUT/8) * ph.size + w * h * bitsPerPackedPixel[ph.size-1] / 8); if (packedBytes < estimatedBytes) { useRle = false; usePalette = true; estimatedBytes = packedBytes; } } } if (!usePalette) ph.size = 0; os->writeU8((useRle ? 128 : 0) | ph.size); for (int i = 0; i < ph.size; i++) { os->WRITE_PIXEL(ph.palette[i]); } if (useRle) { PIXEL_T* ptr = data; PIXEL_T* end = ptr + w * h; PIXEL_T* runStart; PIXEL_T pix; while (ptr < end) { runStart = ptr; pix = *ptr++; while (*ptr == pix && ptr < end) ptr++; int len = ptr - runStart; if (len <= 2 && usePalette) { int index = ph.lookup(pix); if (len == 2) os->writeU8(index); os->writeU8(index); continue; } if (usePalette) { int index = ph.lookup(pix); os->writeU8(index | 128); } else { os->WRITE_PIXEL(pix); } len -= 1; while (len >= 255) { os->writeU8(255); len -= 255; } os->writeU8(len); } } else { // no RLE if (usePalette) { // packed pixels assert (ph.size < 17); int bppp = bitsPerPackedPixel[ph.size-1]; PIXEL_T* ptr = data; for (int i = 0; i < h; i++) { U8 nbits = 0; U8 byte = 0; PIXEL_T* eol = ptr + w; while (ptr < eol) { PIXEL_T pix = *ptr++; U8 index = ph.lookup(pix); byte = (byte << bppp) | index; nbits += bppp; if (nbits >= 8) { os->writeU8(byte); nbits = 0; } } if (nbits > 0) { byte <<= 8 - nbits; os->writeU8(byte); } } } else { // raw #ifdef CPIXEL for (PIXEL_T* ptr = data; ptr < data+w*h; ptr++) { os->WRITE_PIXEL(*ptr); } #else os->writeBytes(data, w*h*(BPP/8)); #endif } } } #undef PIXEL_T #undef WRITE_PIXEL #undef ZRLE_ENCODE #undef ZRLE_ENCODE_TILE #undef BPPOUT