summaryrefslogtreecommitdiffstats
path: root/zrleEncode.h
blob: 6d58a5acd29d73da848284f94003b7fc98c559ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//
// Copyright (C) 2002 RealVNC Ltd.  All Rights Reserved.
//
// This is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this software; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307,
// USA.

//
// zrleEncode.h - zrle encoding function.
//
// Before including this file, you must define a number of CPP macros.
//
// BPP should be 8, 16 or 32 depending on the bits per pixel.
// GET_IMAGE_INTO_BUF should be some code which gets a rectangle of pixel data
// into the given buffer.  EXTRA_ARGS can be defined to pass any other
// arguments needed by GET_IMAGE_INTO_BUF.
//
// Note that the buf argument to ZRLE_ENCODE needs to be at least one pixel
// bigger than the largest tile of pixel data, since the ZRLE encoding
// algorithm writes to the position one past the end of the pixel data.
//

#include <rdr/OutStream.h>
#include <assert.h>

using namespace rdr;

/* __RFB_CONCAT2 concatenates its two arguments.  __RFB_CONCAT2E does the same
   but also expands its arguments if they are macros */

#ifndef __RFB_CONCAT2E
#define __RFB_CONCAT2(a,b) a##b
#define __RFB_CONCAT2E(a,b) __RFB_CONCAT2(a,b)
#endif

#ifdef CPIXEL
#define PIXEL_T __RFB_CONCAT2E(rdr::U,BPP)
#define WRITE_PIXEL __RFB_CONCAT2E(writeOpaque,CPIXEL)
#define ZRLE_ENCODE __RFB_CONCAT2E(zrleEncode,CPIXEL)
#define ZRLE_ENCODE_TILE __RFB_CONCAT2E(zrleEncodeTile,CPIXEL)
#define BPPOUT 24
#else
#define PIXEL_T __RFB_CONCAT2E(rdr::U,BPP)
#define WRITE_PIXEL __RFB_CONCAT2E(writeOpaque,BPP)
#define ZRLE_ENCODE __RFB_CONCAT2E(zrleEncode,BPP)
#define ZRLE_ENCODE_TILE __RFB_CONCAT2E(zrleEncodeTile,BPP)
#define BPPOUT BPP
#endif

#ifndef ZRLE_ONCE
#define ZRLE_ONCE
static const int bitsPerPackedPixel[] = {
  0, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
};

// The PaletteHelper class helps us build up the palette from pixel data by
// storing a reverse index using a simple hash-table

class PaletteHelper {
public:
  enum { MAX_SIZE = 127 };

  PaletteHelper()
  {
    memset(index, 255, sizeof(index));
    size = 0;
  }

  inline int hash(rdr::U32 pix)
  {
    return (pix ^ (pix >> 17)) & 4095;
  }

  inline void insert(rdr::U32 pix)
  {
    if (size < MAX_SIZE) {
      int i = hash(pix);
      while (index[i] != 255 && key[i] != pix)
        i++;
      if (index[i] != 255) return;

      index[i] = size;
      key[i] = pix;
      palette[size] = pix;
    }
    size++;
  }

  inline int lookup(rdr::U32 pix)
  {
    assert(size <= MAX_SIZE);
    int i = hash(pix);
    while (index[i] != 255 && key[i] != pix)
      i++;
    if (index[i] != 255) return index[i];
    return -1;
  }

  rdr::U32 palette[MAX_SIZE];
  rdr::U8 index[4096+MAX_SIZE];
  rdr::U32 key[4096+MAX_SIZE];
  int size;
};
#endif

void ZRLE_ENCODE_TILE (PIXEL_T* data, int w, int h, rdr::OutStream* os);

void ZRLE_ENCODE (int x, int y, int w, int h, rdr::OutStream* os,
                  rdr::ZlibOutStream* zos, void* buf
                  EXTRA_ARGS
                  )
{
  zos->setUnderlying(os);

  for (int ty = y; ty < y+h; ty += rfbZRLETileHeight) {
    int th = rfbZRLETileHeight;
    if (th > y+h-ty) th = y+h-ty;
    for (int tx = x; tx < x+w; tx += rfbZRLETileWidth) {
      int tw = rfbZRLETileWidth;
      if (tw > x+w-tx) tw = x+w-tx;

      GET_IMAGE_INTO_BUF(tx,ty,tw,th,buf);

      ZRLE_ENCODE_TILE((PIXEL_T*)buf, tw, th, zos);
    }
  }
  zos->flush();
}


void ZRLE_ENCODE_TILE (PIXEL_T* data, int w, int h, rdr::OutStream* os)
{
  // First find the palette and the number of runs

  PaletteHelper ph;

  int runs = 0;
  int singlePixels = 0;

  PIXEL_T* ptr = data;
  PIXEL_T* end = ptr + h * w;
  *end = ~*(end-1); // one past the end is different so the while loop ends

  while (ptr < end) {
    PIXEL_T pix = *ptr;
    if (*++ptr != pix) {
      singlePixels++;
    } else {
      while (*++ptr == pix) ;
      runs++;
    }
    ph.insert(pix);
  }

  //fprintf(stderr,"runs %d, single pixels %d, paletteSize %d\n",
  //        runs, singlePixels, ph.size);

  // Solid tile is a special case

  if (ph.size == 1) {
    os->writeU8(1);
    os->WRITE_PIXEL(ph.palette[0]);
    return;
  }

  // Try to work out whether to use RLE and/or a palette.  We do this by
  // estimating the number of bytes which will be generated and picking the
  // method which results in the fewest bytes.  Of course this may not result
  // in the fewest bytes after compression...

  bool useRle = false;
  bool usePalette = false;

  int estimatedBytes = w * h * (BPPOUT/8); // start assuming raw

  int plainRleBytes = ((BPPOUT/8)+1) * (runs + singlePixels);

  if (plainRleBytes < estimatedBytes) {
    useRle = true;
    estimatedBytes = plainRleBytes;
  }

  if (ph.size < 128) {
    int paletteRleBytes = (BPPOUT/8) * ph.size + 2 * runs + singlePixels;

    if (paletteRleBytes < estimatedBytes) {
      useRle = true;
      usePalette = true;
      estimatedBytes = paletteRleBytes;
    }

    if (ph.size < 17) {
      int packedBytes = ((BPPOUT/8) * ph.size +
                         w * h * bitsPerPackedPixel[ph.size-1] / 8);

      if (packedBytes < estimatedBytes) {
        useRle = false;
        usePalette = true;
        estimatedBytes = packedBytes;
      }
    }
  }

  if (!usePalette) ph.size = 0;

  os->writeU8((useRle ? 128 : 0) | ph.size);

  for (int i = 0; i < ph.size; i++) {
    os->WRITE_PIXEL(ph.palette[i]);
  }

  if (useRle) {

    PIXEL_T* ptr = data;
    PIXEL_T* end = ptr + w * h;
    PIXEL_T* runStart;
    PIXEL_T pix;
    while (ptr < end) {
      runStart = ptr;
      pix = *ptr++;
      while (*ptr == pix && ptr < end)
        ptr++;
      int len = ptr - runStart;
      if (len <= 2 && usePalette) {
        int index = ph.lookup(pix);
        if (len == 2)
          os->writeU8(index);
        os->writeU8(index);
        continue;
      }
      if (usePalette) {
        int index = ph.lookup(pix);
        os->writeU8(index | 128);
      } else {
        os->WRITE_PIXEL(pix);
      }
      len -= 1;
      while (len >= 255) {
        os->writeU8(255);
        len -= 255;
      }
      os->writeU8(len);
    }

  } else {

    // no RLE

    if (usePalette) {

      // packed pixels

      assert (ph.size < 17);

      int bppp = bitsPerPackedPixel[ph.size-1];

      PIXEL_T* ptr = data;

      for (int i = 0; i < h; i++) {
        U8 nbits = 0;
        U8 byte = 0;

        PIXEL_T* eol = ptr + w;

        while (ptr < eol) {
          PIXEL_T pix = *ptr++;
          U8 index = ph.lookup(pix);
          byte = (byte << bppp) | index;
          nbits += bppp;
          if (nbits >= 8) {
            os->writeU8(byte);
            nbits = 0;
          }
        }
        if (nbits > 0) {
          byte <<= 8 - nbits;
          os->writeU8(byte);
        }
      }
    } else {

      // raw

#ifdef CPIXEL
      for (PIXEL_T* ptr = data; ptr < data+w*h; ptr++) {
        os->WRITE_PIXEL(*ptr);
      }
#else
      os->writeBytes(data, w*h*(BPP/8));
#endif
    }
  }
}

#undef PIXEL_T
#undef WRITE_PIXEL
#undef ZRLE_ENCODE
#undef ZRLE_ENCODE_TILE
#undef BPPOUT