/* * Copyright (c) 2002 Patrick Julien * Copyright (c) 2004 Boudewijn Rempt * Copyright (c) 2005 Adrian Page * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include LCMS_HEADER #include #include #include #include #include #include "kis_rgb_u16_colorspace.h" #include "kis_u16_base_colorspace.h" #include "kis_color_conversions.h" #include "kis_integer_maths.h" namespace { const TQ_INT32 MAX_CHANNEL_RGB = 3; const TQ_INT32 MAX_CHANNEL_RGBA = 4; } // XXX: already defined is superclass? //const TQ_UINT16 KisRgbU16ColorSpace::U16_OPACITY_OPAQUE; //const TQ_UINT16 KisRgbU16ColorSpace::U16_OPACITY_TRANSPARENT; KisRgbU16ColorSpace::KisRgbU16ColorSpace(KisColorSpaceFactoryRegistry * parent, KisProfile *p) : KisU16BaseColorSpace(KisID("RGBA16", i18n("RGB (16-bit integer/channel)")), TYPE_BGRA_16, icSigRgbData, parent, p) { m_channels.push_back(new KisChannelInfo(i18n("Red"), i18n("R"), PIXEL_RED * sizeof(TQ_UINT16), KisChannelInfo::COLOR, KisChannelInfo::UINT16, sizeof(TQ_UINT16), TQColor(255,0,0))); m_channels.push_back(new KisChannelInfo(i18n("Green"), i18n("G"), PIXEL_GREEN * sizeof(TQ_UINT16), KisChannelInfo::COLOR, KisChannelInfo::UINT16, sizeof(TQ_UINT16), TQColor(0,255,0))); m_channels.push_back(new KisChannelInfo(i18n("Blue"), i18n("B"), PIXEL_BLUE * sizeof(TQ_UINT16), KisChannelInfo::COLOR, KisChannelInfo::UINT16, sizeof(TQ_UINT16), TQColor(0,0,255))); m_channels.push_back(new KisChannelInfo(i18n("Alpha"), i18n("A"), PIXEL_ALPHA * sizeof(TQ_UINT16), KisChannelInfo::ALPHA, KisChannelInfo::UINT16, sizeof(TQ_UINT16))); m_alphaPos = PIXEL_ALPHA * sizeof(TQ_UINT16); init(); } KisRgbU16ColorSpace::~KisRgbU16ColorSpace() { } void KisRgbU16ColorSpace::setPixel(TQ_UINT8 *dst, TQ_UINT16 red, TQ_UINT16 green, TQ_UINT16 blue, TQ_UINT16 alpha) const { Pixel *dstPixel = reinterpret_cast(dst); dstPixel->red = red; dstPixel->green = green; dstPixel->blue = blue; dstPixel->alpha = alpha; } void KisRgbU16ColorSpace::getPixel(const TQ_UINT8 *src, TQ_UINT16 *red, TQ_UINT16 *green, TQ_UINT16 *blue, TQ_UINT16 *alpha) const { const Pixel *srcPixel = reinterpret_cast(src); *red = srcPixel->red; *green = srcPixel->green; *blue = srcPixel->blue; *alpha = srcPixel->alpha; } void KisRgbU16ColorSpace::mixColors(const TQ_UINT8 **colors, const TQ_UINT8 *weights, TQ_UINT32 nColors, TQ_UINT8 *dst) const { TQ_UINT32 totalRed = 0, totalGreen = 0, totalBlue = 0, newAlpha = 0; while (nColors--) { const Pixel *pixel = reinterpret_cast(*colors); TQ_UINT32 alpha = pixel->alpha; TQ_UINT32 alphaTimesWeight = UINT16_MULT(alpha, UINT8_TO_UINT16(*weights)); totalRed += UINT16_MULT(pixel->red, alphaTimesWeight); totalGreen += UINT16_MULT(pixel->green, alphaTimesWeight); totalBlue += UINT16_MULT(pixel->blue, alphaTimesWeight); newAlpha += alphaTimesWeight; weights++; colors++; } Q_ASSERT(newAlpha <= U16_OPACITY_OPAQUE); Pixel *dstPixel = reinterpret_cast(dst); dstPixel->alpha = newAlpha; if (newAlpha > 0) { totalRed = UINT16_DIVIDE(totalRed, newAlpha); totalGreen = UINT16_DIVIDE(totalGreen, newAlpha); totalBlue = UINT16_DIVIDE(totalBlue, newAlpha); } dstPixel->red = totalRed; dstPixel->green = totalGreen; dstPixel->blue = totalBlue; } void KisRgbU16ColorSpace::convolveColors(TQ_UINT8** colors, TQ_INT32* kernelValues, KisChannelInfo::enumChannelFlags channelFlags, TQ_UINT8 *dst, TQ_INT32 factor, TQ_INT32 offset, TQ_INT32 nColors) const { TQ_INT32 totalRed = 0, totalGreen = 0, totalBlue = 0, totalAlpha = 0; while (nColors--) { const Pixel * pixel = reinterpret_cast( *colors ); TQ_INT32 weight = *kernelValues; if (weight != 0) { totalRed += pixel->red * weight; totalGreen += pixel->green * weight; totalBlue += pixel->blue * weight; totalAlpha +=pixel->alpha * weight; } colors++; kernelValues++; } Pixel * p = reinterpret_cast< Pixel *>( dst ); if (channelFlags & KisChannelInfo::FLAG_COLOR) { p->red = CLAMP( ( totalRed / factor) + offset, 0, TQ_UINT16_MAX); p->green = CLAMP( ( totalGreen / factor) + offset, 0, TQ_UINT16_MAX); p->blue = CLAMP( ( totalBlue / factor) + offset, 0, TQ_UINT16_MAX); } if (channelFlags & KisChannelInfo::FLAG_ALPHA) { p->alpha = CLAMP((totalAlpha/ factor) + offset, 0, TQ_UINT16_MAX); } } void KisRgbU16ColorSpace::invertColor(TQ_UINT8 * src, TQ_INT32 nPixels) { TQ_UINT32 psize = pixelSize(); while (nPixels--) { Pixel * p = reinterpret_cast< Pixel *>( src ); p->red = TQ_UINT16_MAX - p->red; p->green = TQ_UINT16_MAX - p->green; p->blue = TQ_UINT16_MAX - p->blue; src += psize; } } TQ_UINT8 KisRgbU16ColorSpace::intensity8(const TQ_UINT8 * src) const { const Pixel * p = reinterpret_cast( src ); return UINT16_TO_UINT8(static_cast((p->red * 0.30 + p->green * 0.59 + p->blue * 0.11) + 0.5)); } TQValueVector KisRgbU16ColorSpace::channels() const { return m_channels; } TQ_UINT32 KisRgbU16ColorSpace::nChannels() const { return MAX_CHANNEL_RGBA; } TQ_UINT32 KisRgbU16ColorSpace::nColorChannels() const { return MAX_CHANNEL_RGB; } TQ_UINT32 KisRgbU16ColorSpace::pixelSize() const { return MAX_CHANNEL_RGBA * sizeof(TQ_UINT16); } void KisRgbU16ColorSpace::compositeOver(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { while (rows > 0) { const TQ_UINT16 *src = reinterpret_cast(srcRowStart); TQ_UINT16 *dst = reinterpret_cast(dstRowStart); const TQ_UINT8 *mask = maskRowStart; TQ_INT32 columns = numColumns; while (columns > 0) { TQ_UINT16 srcAlpha = src[PIXEL_ALPHA]; // apply the alphamask if (mask != 0) { TQ_UINT8 U8_mask = *mask; if (U8_mask != OPACITY_OPAQUE) { srcAlpha = UINT16_MULT(srcAlpha, UINT8_TO_UINT16(U8_mask)); } mask++; } if (srcAlpha != U16_OPACITY_TRANSPARENT) { if (opacity != U16_OPACITY_OPAQUE) { srcAlpha = UINT16_MULT(srcAlpha, opacity); } if (srcAlpha == U16_OPACITY_OPAQUE) { memcpy(dst, src, MAX_CHANNEL_RGBA * sizeof(TQ_UINT16)); } else { TQ_UINT16 dstAlpha = dst[PIXEL_ALPHA]; TQ_UINT16 srcBlend; if (dstAlpha == U16_OPACITY_OPAQUE) { srcBlend = srcAlpha; } else { TQ_UINT16 newAlpha = dstAlpha + UINT16_MULT(U16_OPACITY_OPAQUE - dstAlpha, srcAlpha); dst[PIXEL_ALPHA] = newAlpha; if (newAlpha != 0) { srcBlend = UINT16_DIVIDE(srcAlpha, newAlpha); } else { srcBlend = srcAlpha; } } if (srcBlend == U16_OPACITY_OPAQUE) { memcpy(dst, src, MAX_CHANNEL_RGB * sizeof(TQ_UINT16)); } else { dst[PIXEL_RED] = UINT16_BLEND(src[PIXEL_RED], dst[PIXEL_RED], srcBlend); dst[PIXEL_GREEN] = UINT16_BLEND(src[PIXEL_GREEN], dst[PIXEL_GREEN], srcBlend); dst[PIXEL_BLUE] = UINT16_BLEND(src[PIXEL_BLUE], dst[PIXEL_BLUE], srcBlend); } } } columns--; src += MAX_CHANNEL_RGBA; dst += MAX_CHANNEL_RGBA; } rows--; srcRowStart += srcRowStride; dstRowStart += dstRowStride; if(maskRowStart) { maskRowStart += maskRowStride; } } } #define COMMON_COMPOSITE_OP_PROLOG() \ while (rows > 0) { \ \ const TQ_UINT16 *src = reinterpret_cast(srcRowStart); \ TQ_UINT16 *dst = reinterpret_cast(dstRowStart); \ TQ_INT32 columns = numColumns; \ const TQ_UINT8 *mask = maskRowStart; \ \ while (columns > 0) { \ \ TQ_UINT16 srcAlpha = src[PIXEL_ALPHA]; \ TQ_UINT16 dstAlpha = dst[PIXEL_ALPHA]; \ \ srcAlpha = TQMIN(srcAlpha, dstAlpha); \ \ if (mask != 0) { \ TQ_UINT8 U8_mask = *mask; \ \ if (U8_mask != OPACITY_OPAQUE) { \ srcAlpha = UINT16_MULT(srcAlpha, UINT8_TO_UINT16(U8_mask)); \ } \ mask++; \ } \ \ if (srcAlpha != U16_OPACITY_TRANSPARENT) { \ \ if (opacity != U16_OPACITY_OPAQUE) { \ srcAlpha = UINT16_MULT(srcAlpha, opacity); \ } \ \ TQ_UINT16 srcBlend; \ \ if (dstAlpha == U16_OPACITY_OPAQUE) { \ srcBlend = srcAlpha; \ } else { \ TQ_UINT16 newAlpha = dstAlpha + UINT16_MULT(U16_OPACITY_OPAQUE - dstAlpha, srcAlpha); \ dst[PIXEL_ALPHA] = newAlpha; \ \ if (newAlpha != 0) { \ srcBlend = UINT16_DIVIDE(srcAlpha, newAlpha); \ } else { \ srcBlend = srcAlpha; \ } \ } #define COMMON_COMPOSITE_OP_EPILOG() \ } \ \ columns--; \ src += MAX_CHANNEL_RGBA; \ dst += MAX_CHANNEL_RGBA; \ } \ \ rows--; \ srcRowStart += srcRowStride; \ dstRowStart += dstRowStride; \ if(maskRowStart) { \ maskRowStart += maskRowStride; \ } \ } void KisRgbU16ColorSpace::compositeMultiply(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = UINT16_MULT(srcColor, dstColor); dst[channel] = UINT16_BLEND(srcColor, dstColor, srcBlend); } } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeDivide(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = TQMIN((dstColor * (UINT16_MAX + 1u) + (srcColor / 2u)) / (1u + srcColor), UINT16_MAX); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeScreen(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = UINT16_MAX - UINT16_MULT(UINT16_MAX - dstColor, UINT16_MAX - srcColor); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeOverlay(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = UINT16_MULT(dstColor, dstColor + 2u * UINT16_MULT(srcColor, UINT16_MAX - dstColor)); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeDodge(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = TQMIN((dstColor * (UINT16_MAX + 1u)) / (UINT16_MAX + 1u - srcColor), UINT16_MAX); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeBurn(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = kMin(((UINT16_MAX - dstColor) * (UINT16_MAX + 1u)) / (srcColor + 1u), UINT16_MAX); srcColor = kClamp(UINT16_MAX - srcColor, 0u, UINT16_MAX); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeDarken(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = TQMIN(srcColor, dstColor); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeLighten(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) { TQ_UINT16 srcColor = src[channel]; TQ_UINT16 dstColor = dst[channel]; srcColor = TQMAX(srcColor, dstColor); TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend); dst[channel] = newColor; } } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeHue(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { float FSrcRed = static_cast(src[PIXEL_RED]) / UINT16_MAX; float FSrcGreen = static_cast(src[PIXEL_GREEN]) / UINT16_MAX; float FSrcBlue = static_cast(src[PIXEL_BLUE]) / UINT16_MAX; TQ_UINT16 dstRed = dst[PIXEL_RED]; TQ_UINT16 dstGreen = dst[PIXEL_GREEN]; TQ_UINT16 dstBlue = dst[PIXEL_BLUE]; float FDstRed = static_cast(dstRed) / UINT16_MAX; float FDstGreen = static_cast(dstGreen) / UINT16_MAX; float FDstBlue = static_cast(dstBlue) / UINT16_MAX; float srcHue; float srcSaturation; float srcValue; float dstHue; float dstSaturation; float dstValue; RGBToHSV(FSrcRed, FSrcGreen, FSrcBlue, &srcHue, &srcSaturation, &srcValue); RGBToHSV(FDstRed, FDstGreen, FDstBlue, &dstHue, &dstSaturation, &dstValue); HSVToRGB(srcHue, dstSaturation, dstValue, &FSrcRed, &FSrcGreen, &FSrcBlue); TQ_UINT16 srcRed = static_cast(FSrcRed * UINT16_MAX + 0.5); TQ_UINT16 srcGreen = static_cast(FSrcGreen * UINT16_MAX + 0.5); TQ_UINT16 srcBlue = static_cast(FSrcBlue * UINT16_MAX + 0.5); dst[PIXEL_RED] = UINT16_BLEND(srcRed, dstRed, srcBlend); dst[PIXEL_GREEN] = UINT16_BLEND(srcGreen, dstGreen, srcBlend); dst[PIXEL_BLUE] = UINT16_BLEND(srcBlue, dstBlue, srcBlend); } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeSaturation(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { float FSrcRed = static_cast(src[PIXEL_RED]) / UINT16_MAX; float FSrcGreen = static_cast(src[PIXEL_GREEN]) / UINT16_MAX; float FSrcBlue = static_cast(src[PIXEL_BLUE]) / UINT16_MAX; TQ_UINT16 dstRed = dst[PIXEL_RED]; TQ_UINT16 dstGreen = dst[PIXEL_GREEN]; TQ_UINT16 dstBlue = dst[PIXEL_BLUE]; float FDstRed = static_cast(dstRed) / UINT16_MAX; float FDstGreen = static_cast(dstGreen) / UINT16_MAX; float FDstBlue = static_cast(dstBlue) / UINT16_MAX; float srcHue; float srcSaturation; float srcValue; float dstHue; float dstSaturation; float dstValue; RGBToHSV(FSrcRed, FSrcGreen, FSrcBlue, &srcHue, &srcSaturation, &srcValue); RGBToHSV(FDstRed, FDstGreen, FDstBlue, &dstHue, &dstSaturation, &dstValue); HSVToRGB(dstHue, srcSaturation, dstValue, &FSrcRed, &FSrcGreen, &FSrcBlue); TQ_UINT16 srcRed = static_cast(FSrcRed * UINT16_MAX + 0.5); TQ_UINT16 srcGreen = static_cast(FSrcGreen * UINT16_MAX + 0.5); TQ_UINT16 srcBlue = static_cast(FSrcBlue * UINT16_MAX + 0.5); dst[PIXEL_RED] = UINT16_BLEND(srcRed, dstRed, srcBlend); dst[PIXEL_GREEN] = UINT16_BLEND(srcGreen, dstGreen, srcBlend); dst[PIXEL_BLUE] = UINT16_BLEND(srcBlue, dstBlue, srcBlend); } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeValue(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { float FSrcRed = static_cast(src[PIXEL_RED]) / UINT16_MAX; float FSrcGreen = static_cast(src[PIXEL_GREEN]) / UINT16_MAX; float FSrcBlue = static_cast(src[PIXEL_BLUE]) / UINT16_MAX; TQ_UINT16 dstRed = dst[PIXEL_RED]; TQ_UINT16 dstGreen = dst[PIXEL_GREEN]; TQ_UINT16 dstBlue = dst[PIXEL_BLUE]; float FDstRed = static_cast(dstRed) / UINT16_MAX; float FDstGreen = static_cast(dstGreen) / UINT16_MAX; float FDstBlue = static_cast(dstBlue) / UINT16_MAX; float srcHue; float srcSaturation; float srcValue; float dstHue; float dstSaturation; float dstValue; RGBToHSV(FSrcRed, FSrcGreen, FSrcBlue, &srcHue, &srcSaturation, &srcValue); RGBToHSV(FDstRed, FDstGreen, FDstBlue, &dstHue, &dstSaturation, &dstValue); HSVToRGB(dstHue, dstSaturation, srcValue, &FSrcRed, &FSrcGreen, &FSrcBlue); TQ_UINT16 srcRed = static_cast(FSrcRed * UINT16_MAX + 0.5); TQ_UINT16 srcGreen = static_cast(FSrcGreen * UINT16_MAX + 0.5); TQ_UINT16 srcBlue = static_cast(FSrcBlue * UINT16_MAX + 0.5); dst[PIXEL_RED] = UINT16_BLEND(srcRed, dstRed, srcBlend); dst[PIXEL_GREEN] = UINT16_BLEND(srcGreen, dstGreen, srcBlend); dst[PIXEL_BLUE] = UINT16_BLEND(srcBlue, dstBlue, srcBlend); } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeColor(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity) { COMMON_COMPOSITE_OP_PROLOG(); { float FSrcRed = static_cast(src[PIXEL_RED]) / UINT16_MAX; float FSrcGreen = static_cast(src[PIXEL_GREEN]) / UINT16_MAX; float FSrcBlue = static_cast(src[PIXEL_BLUE]) / UINT16_MAX; TQ_UINT16 dstRed = dst[PIXEL_RED]; TQ_UINT16 dstGreen = dst[PIXEL_GREEN]; TQ_UINT16 dstBlue = dst[PIXEL_BLUE]; float FDstRed = static_cast(dstRed) / UINT16_MAX; float FDstGreen = static_cast(dstGreen) / UINT16_MAX; float FDstBlue = static_cast(dstBlue) / UINT16_MAX; float srcHue; float srcSaturation; float srcLightness; float dstHue; float dstSaturation; float dstLightness; RGBToHSL(FSrcRed, FSrcGreen, FSrcBlue, &srcHue, &srcSaturation, &srcLightness); RGBToHSL(FDstRed, FDstGreen, FDstBlue, &dstHue, &dstSaturation, &dstLightness); HSLToRGB(srcHue, srcSaturation, dstLightness, &FSrcRed, &FSrcGreen, &FSrcBlue); TQ_UINT16 srcRed = static_cast(FSrcRed * UINT16_MAX + 0.5); TQ_UINT16 srcGreen = static_cast(FSrcGreen * UINT16_MAX + 0.5); TQ_UINT16 srcBlue = static_cast(FSrcBlue * UINT16_MAX + 0.5); dst[PIXEL_RED] = UINT16_BLEND(srcRed, dstRed, srcBlend); dst[PIXEL_GREEN] = UINT16_BLEND(srcGreen, dstGreen, srcBlend); dst[PIXEL_BLUE] = UINT16_BLEND(srcBlue, dstBlue, srcBlend); } COMMON_COMPOSITE_OP_EPILOG(); } void KisRgbU16ColorSpace::compositeErase(TQ_UINT8 *dst, TQ_INT32 dstRowSize, const TQ_UINT8 *src, TQ_INT32 srcRowSize, const TQ_UINT8 *srcAlphaMask, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 cols, TQ_UINT16 /*opacity*/) { while (rows-- > 0) { const Pixel *s = reinterpret_cast(src); Pixel *d = reinterpret_cast(dst); const TQ_UINT8 *mask = srcAlphaMask; for (TQ_INT32 i = cols; i > 0; i--, s++, d++) { TQ_UINT16 srcAlpha = s->alpha; // apply the alphamask if (mask != 0) { TQ_UINT8 U8_mask = *mask; if (U8_mask != OPACITY_OPAQUE) { srcAlpha = UINT16_BLEND(srcAlpha, U16_OPACITY_OPAQUE, UINT8_TO_UINT16(U8_mask)); } mask++; } d->alpha = UINT16_MULT(srcAlpha, d->alpha); } dst += dstRowSize; src += srcRowSize; if(srcAlphaMask) { srcAlphaMask += maskRowStride; } } } void KisRgbU16ColorSpace::bitBlt(TQ_UINT8 *dst, TQ_INT32 dstRowStride, const TQ_UINT8 *src, TQ_INT32 srcRowStride, const TQ_UINT8 *mask, TQ_INT32 maskRowStride, TQ_UINT8 U8_opacity, TQ_INT32 rows, TQ_INT32 cols, const KisCompositeOp& op) { TQ_UINT16 opacity = UINT8_TO_UINT16(U8_opacity); switch (op.op()) { case COMPOSITE_UNDEF: // Undefined == no composition break; case COMPOSITE_OVER: compositeOver(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_IN: //compositeIn(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); case COMPOSITE_OUT: //compositeOut(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_ATOP: //compositeAtop(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_XOR: //compositeXor(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_PLUS: //compositePlus(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_MINUS: //compositeMinus(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_ADD: //compositeAdd(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_SUBTRACT: //compositeSubtract(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_DIFF: //compositeDiff(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_MULT: compositeMultiply(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_DIVIDE: compositeDivide(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_BUMPMAP: //compositeBumpmap(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_COPY: compositeCopy(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, U8_opacity); break; case COMPOSITE_COPY_RED: //compositeCopyRed(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_COPY_GREEN: //compositeCopyGreen(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_COPY_BLUE: //compositeCopyBlue(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_COPY_OPACITY: //compositeCopyOpacity(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_CLEAR: //compositeClear(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_DISSOLVE: //compositeDissolve(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_DISPLACE: //compositeDisplace(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; #if 0 case COMPOSITE_MODULATE: compositeModulate(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_THRESHOLD: compositeThreshold(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; #endif case COMPOSITE_NO: // No composition. break; case COMPOSITE_DARKEN: compositeDarken(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_LIGHTEN: compositeLighten(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_HUE: compositeHue(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_SATURATION: compositeSaturation(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_VALUE: compositeValue(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_COLOR: compositeColor(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_COLORIZE: //compositeColorize(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_LUMINIZE: //compositeLuminize(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity); break; case COMPOSITE_SCREEN: compositeScreen(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_OVERLAY: compositeOverlay(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_ERASE: compositeErase(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_DODGE: compositeDodge(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_BURN: compositeBurn(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity); break; case COMPOSITE_ALPHA_DARKEN: abstractCompositeAlphaDarken( dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity, U16Mult(), Uint8ToU16(), U16OpacityTest()); break; default: break; } } KisCompositeOpList KisRgbU16ColorSpace::userVisiblecompositeOps() const { KisCompositeOpList list; list.append(KisCompositeOp(COMPOSITE_OVER)); list.append(KisCompositeOp(COMPOSITE_ALPHA_DARKEN)); list.append(KisCompositeOp(COMPOSITE_MULT)); list.append(KisCompositeOp(COMPOSITE_BURN)); list.append(KisCompositeOp(COMPOSITE_DODGE)); list.append(KisCompositeOp(COMPOSITE_DIVIDE)); list.append(KisCompositeOp(COMPOSITE_SCREEN)); list.append(KisCompositeOp(COMPOSITE_OVERLAY)); list.append(KisCompositeOp(COMPOSITE_DARKEN)); list.append(KisCompositeOp(COMPOSITE_LIGHTEN)); list.append(KisCompositeOp(COMPOSITE_HUE)); list.append(KisCompositeOp(COMPOSITE_SATURATION)); list.append(KisCompositeOp(COMPOSITE_VALUE)); list.append(KisCompositeOp(COMPOSITE_COLOR)); return list; }