您最多能選擇 25 個主題 主題必須以字母或數字為開頭,可包含連接號「-」且最長為 35 個字元。
koffice/chalk/colorspaces/gray_u8/kis_gray_colorspace.cc

998 行
31 KiB

/*
* Copyright (c) 2002 Patrick Julien <freak@codepimps.org>
* Copyright (c) 2004 Cyrille Berger
* Copyright (c) 2004 Boudewijn Rempt <boud@valdyas.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <limits.h>
#include <stdlib.h>
#include <config.h>
#include LCMS_HEADER
#include <tqimage.h>
#include <tdelocale.h>
#include <kdebug.h>
#include <tdeglobal.h>
#include "kis_abstract_colorspace.h"
#include "kis_u8_base_colorspace.h"
#include "kis_gray_colorspace.h"
#include "kis_integer_maths.h"
#define downscale(quantum) (quantum) //((unsigned char) ((quantum)/257UL))
#define upscale(value) (value) // ((TQ_UINT8) (257UL*(value)))
namespace {
const TQ_INT32 MAX_CHANNEL_GRAYSCALE = 1;
const TQ_INT32 MAX_CHANNEL_GRAYSCALEA = 2;
}
KisGrayColorSpace::KisGrayColorSpace(KisColorSpaceFactoryRegistry * parent, KisProfile *p) :
KisU8BaseColorSpace(KisID("GRAYA", i18n("Grayscale")), TYPE_GRAYA_8, icSigGrayData, parent, p)
{
m_channels.push_back(new KisChannelInfo(i18n("Gray"), i18n("G"), 0, KisChannelInfo::COLOR, KisChannelInfo::UINT8));
m_channels.push_back(new KisChannelInfo(i18n("Alpha"), i18n("A"), 1, KisChannelInfo::ALPHA, KisChannelInfo::UINT8));
m_alphaPos = PIXEL_GRAY_ALPHA;
init();
}
KisGrayColorSpace::~KisGrayColorSpace()
{
}
void KisGrayColorSpace::setPixel(TQ_UINT8 *pixel, TQ_UINT8 gray, TQ_UINT8 alpha) const
{
pixel[PIXEL_GRAY] = gray;
pixel[PIXEL_GRAY_ALPHA] = alpha;
}
void KisGrayColorSpace::getPixel(const TQ_UINT8 *pixel, TQ_UINT8 *gray, TQ_UINT8 *alpha) const
{
*gray = pixel[PIXEL_GRAY];
*alpha = pixel[PIXEL_GRAY_ALPHA];
}
void KisGrayColorSpace::getAlpha(const TQ_UINT8 *pixel, TQ_UINT8 *alpha) const
{
*alpha = pixel[PIXEL_GRAY_ALPHA];
}
void KisGrayColorSpace::setAlpha(TQ_UINT8 *pixels, TQ_UINT8 alpha, TQ_INT32 nPixels) const
{
while (nPixels > 0) {
pixels[PIXEL_GRAY_ALPHA] = alpha;
--nPixels;
pixels += MAX_CHANNEL_GRAYSCALEA;
}
}
void KisGrayColorSpace::mixColors(const TQ_UINT8 **colors, const TQ_UINT8 *weights, TQ_UINT32 nColors, TQ_UINT8 *dst) const
{
TQ_UINT32 totalGray = 0, newAlpha = 0;
while (nColors--)
{
TQ_UINT32 alpha = (*colors)[PIXEL_GRAY_ALPHA];
TQ_UINT32 alphaTimesWeight = UINT8_MULT(alpha, *weights);
totalGray += (*colors)[PIXEL_GRAY] * alphaTimesWeight;
newAlpha += alphaTimesWeight;
weights++;
colors++;
}
Q_ASSERT(newAlpha <= 255);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha > 0) {
totalGray = UINT8_DIVIDE(totalGray, newAlpha);
}
// Divide by 255.
totalGray += 0x80;
TQ_UINT32 dstGray = ((totalGray >> 8) + totalGray) >> 8;
Q_ASSERT(dstGray <= 255);
dst[PIXEL_GRAY] = dstGray;
}
void KisGrayColorSpace::convolveColors(TQ_UINT8** colors, TQ_INT32* kernelValues, KisChannelInfo::enumChannelFlags channelFlags, TQ_UINT8 *dst, TQ_INT32 factor, TQ_INT32 offset, TQ_INT32 nColors) const
{
TQ_INT32 totalGray = 0, totalAlpha = 0;
while (nColors--)
{
TQ_INT32 weight = *kernelValues;
if (weight != 0) {
totalGray += (*colors)[PIXEL_GRAY] * weight;
totalAlpha += (*colors)[PIXEL_GRAY_ALPHA] * weight;
}
colors++;
kernelValues++;
}
if (channelFlags & KisChannelInfo::FLAG_COLOR) {
dst[PIXEL_GRAY] = CLAMP((totalGray / factor) + offset, 0, TQ_UINT8_MAX);
}
if (channelFlags & KisChannelInfo::FLAG_ALPHA) {
dst[PIXEL_GRAY_ALPHA] = CLAMP((totalAlpha/ factor) + offset, 0, TQ_UINT8_MAX);
}
}
void KisGrayColorSpace::invertColor(TQ_UINT8 * src, TQ_INT32 nPixels)
{
TQ_UINT32 psize = pixelSize();
while (nPixels--)
{
src[PIXEL_GRAY] = TQ_UINT8_MAX - src[PIXEL_GRAY];
src += psize;
}
}
void KisGrayColorSpace::darken(const TQ_UINT8 * src, TQ_UINT8 * dst, TQ_INT32 shade, bool compensate, double compensation, TQ_INT32 nPixels) const
{
TQ_UINT32 pSize = pixelSize();
while (nPixels--) {
if (compensate) {
dst[PIXEL_GRAY] = (TQ_INT8) TQMIN(255,((src[PIXEL_GRAY] * shade) / (compensation * 255)));
}
else {
dst[PIXEL_GRAY] = (TQ_INT8) TQMIN(255, (src[PIXEL_GRAY] * shade / 255));
}
dst += pSize;
src += pSize;
}
}
TQ_UINT8 KisGrayColorSpace::intensity8(const TQ_UINT8 * src) const
{
return src[PIXEL_GRAY];
}
TQValueVector<KisChannelInfo *> KisGrayColorSpace::channels() const
{
return m_channels;
}
TQ_UINT32 KisGrayColorSpace::nChannels() const
{
return MAX_CHANNEL_GRAYSCALEA;
}
TQ_UINT32 KisGrayColorSpace::nColorChannels() const
{
return MAX_CHANNEL_GRAYSCALE;
}
TQ_UINT32 KisGrayColorSpace::pixelSize() const
{
return MAX_CHANNEL_GRAYSCALEA;
}
void KisGrayColorSpace::bitBlt(TQ_UINT8 *dst,
TQ_INT32 dstRowStride,
const TQ_UINT8 *src,
TQ_INT32 srcRowStride,
const TQ_UINT8 *mask,
TQ_INT32 maskRowStride,
TQ_UINT8 opacity,
TQ_INT32 rows,
TQ_INT32 cols,
const KisCompositeOp& op)
{
switch (op.op()) {
case COMPOSITE_OVER:
compositeOver(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_MULT:
compositeMultiply(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_DIVIDE:
compositeDivide(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_DARKEN:
compositeDarken(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_LIGHTEN:
compositeLighten(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_SCREEN:
compositeScreen(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_OVERLAY:
compositeOverlay(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_DODGE:
compositeDodge(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_BURN:
compositeBurn(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_ERASE:
compositeErase(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_COPY:
compositeCopy(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_CLEAR: {
TQ_UINT8 *d;
TQ_INT32 linesize;
linesize = MAX_CHANNEL_GRAYSCALEA*sizeof(TQ_UINT8) * cols;
d = dst;
while (rows-- > 0) {
memset(d, 0, linesize);
d += dstRowStride;
}
}
break;
case COMPOSITE_ALPHA_DARKEN:
compositeAlphaDarken(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
default:
break;
}
}
KisCompositeOpList KisGrayColorSpace::userVisiblecompositeOps() const
{
KisCompositeOpList list;
list.append(KisCompositeOp(COMPOSITE_OVER));
list.append(KisCompositeOp(COMPOSITE_MULT));
list.append(KisCompositeOp(COMPOSITE_BURN));
list.append(KisCompositeOp(COMPOSITE_DODGE));
list.append(KisCompositeOp(COMPOSITE_DIVIDE));
list.append(KisCompositeOp(COMPOSITE_SCREEN));
list.append(KisCompositeOp(COMPOSITE_OVERLAY));
list.append(KisCompositeOp(COMPOSITE_DARKEN));
list.append(KisCompositeOp(COMPOSITE_LIGHTEN));
return list;
}
void KisGrayColorSpace::compositeOver(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
TQ_INT32 columns = numColumns;
const TQ_UINT8 *mask = maskRowStart;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (srcAlpha != OPACITY_TRANSPARENT) {
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(srcAlpha, opacity);
}
if (srcAlpha == OPACITY_OPAQUE) {
memcpy(dst, src, MAX_CHANNEL_GRAYSCALEA * sizeof(TQ_UINT8));
} else {
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
TQ_UINT8 srcBlend;
if (dstAlpha == OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
if (srcBlend == OPACITY_OPAQUE) {
memcpy(dst, src, MAX_CHANNEL_GRAYSCALE * sizeof(TQ_UINT8));
} else {
dst[PIXEL_GRAY] = UINT8_BLEND(src[PIXEL_GRAY], dst[PIXEL_GRAY], srcBlend);
}
}
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}
void KisGrayColorSpace::compositeMultiply(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
TQ_INT32 columns = numColumns;
const TQ_UINT8 *mask = maskRowStart;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
srcAlpha = TQMIN(srcAlpha, dstAlpha);
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (srcAlpha != OPACITY_TRANSPARENT) {
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity);
}
TQ_UINT8 srcBlend;
if (dstAlpha == OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
TQ_UINT8 srcColor = src[PIXEL_GRAY];
TQ_UINT8 dstColor = dst[PIXEL_GRAY];
srcColor = UINT8_MULT(srcColor, dstColor);
dst[PIXEL_GRAY] = UINT8_BLEND(srcColor, dstColor, srcBlend);
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}
void KisGrayColorSpace::compositeDivide(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
TQ_INT32 columns = numColumns;
const TQ_UINT8 *mask = maskRowStart;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
srcAlpha = TQMIN(srcAlpha, dstAlpha);
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (srcAlpha != OPACITY_TRANSPARENT) {
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity);
}
TQ_UINT8 srcBlend;
if (dstAlpha == OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) {
TQ_UINT8 srcColor = src[channel];
TQ_UINT8 dstColor = dst[channel];
srcColor = TQMIN((dstColor * (UINT8_MAX + 1)) / (1 + srcColor), UINT8_MAX);
TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}
void KisGrayColorSpace::compositeScreen(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
TQ_INT32 columns = numColumns;
const TQ_UINT8 *mask = maskRowStart;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
srcAlpha = TQMIN(srcAlpha, dstAlpha);
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (srcAlpha != OPACITY_TRANSPARENT) {
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity);
}
TQ_UINT8 srcBlend;
if (dstAlpha == OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) {
TQ_UINT8 srcColor = src[channel];
TQ_UINT8 dstColor = dst[channel];
srcColor = UINT8_MAX - UINT8_MULT(UINT8_MAX - dstColor, UINT8_MAX - srcColor);
TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}
void KisGrayColorSpace::compositeOverlay(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
TQ_INT32 columns = numColumns;
const TQ_UINT8 *mask = maskRowStart;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
srcAlpha = TQMIN(srcAlpha, dstAlpha);
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (srcAlpha != OPACITY_TRANSPARENT) {
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity);
}
TQ_UINT8 srcBlend;
if (dstAlpha == OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) {
TQ_UINT8 srcColor = src[channel];
TQ_UINT8 dstColor = dst[channel];
srcColor = UINT8_MULT(dstColor, dstColor + UINT8_MULT(2 * srcColor, UINT8_MAX - dstColor));
TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}
void KisGrayColorSpace::compositeDodge(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
TQ_INT32 columns = numColumns;
const TQ_UINT8 *mask = maskRowStart;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
srcAlpha = TQMIN(srcAlpha, dstAlpha);
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (srcAlpha != OPACITY_TRANSPARENT) {
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity);
}
TQ_UINT8 srcBlend;
if (dstAlpha == OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) {
TQ_UINT8 srcColor = src[channel];
TQ_UINT8 dstColor = dst[channel];
srcColor = TQMIN((dstColor * (UINT8_MAX + 1)) / (UINT8_MAX + 1 - srcColor), UINT8_MAX);
TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}
void KisGrayColorSpace::compositeBurn(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
TQ_INT32 columns = numColumns;
const TQ_UINT8 *mask = maskRowStart;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
srcAlpha = TQMIN(srcAlpha, dstAlpha);
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (srcAlpha != OPACITY_TRANSPARENT) {
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity);
}
TQ_UINT8 srcBlend;
if (dstAlpha == OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) {
TQ_UINT8 srcColor = src[channel];
TQ_UINT8 dstColor = dst[channel];
srcColor = kMin(((UINT8_MAX - dstColor) * (UINT8_MAX + 1)) / (srcColor + 1), UINT8_MAX);
srcColor = kClamp(UINT8_MAX - srcColor, 0u, UINT8_MAX);
TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}
void KisGrayColorSpace::compositeDarken(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
TQ_INT32 columns = numColumns;
const TQ_UINT8 *mask = maskRowStart;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
srcAlpha = TQMIN(srcAlpha, dstAlpha);
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (srcAlpha != OPACITY_TRANSPARENT) {
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity);
}
TQ_UINT8 srcBlend;
if (dstAlpha == OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) {
TQ_UINT8 srcColor = src[channel];
TQ_UINT8 dstColor = dst[channel];
srcColor = TQMIN(srcColor, dstColor);
TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}
void KisGrayColorSpace::compositeLighten(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
TQ_INT32 columns = numColumns;
const TQ_UINT8 *mask = maskRowStart;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
srcAlpha = TQMIN(srcAlpha, dstAlpha);
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (srcAlpha != OPACITY_TRANSPARENT) {
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(src[PIXEL_GRAY_ALPHA], opacity);
}
TQ_UINT8 srcBlend;
if (dstAlpha == OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT8 newAlpha = dstAlpha + UINT8_MULT(OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_GRAY_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT8_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
for (int channel = 0; channel < MAX_CHANNEL_GRAYSCALE; channel++) {
TQ_UINT8 srcColor = src[channel];
TQ_UINT8 dstColor = dst[channel];
srcColor = TQMAX(srcColor, dstColor);
TQ_UINT8 newColor = UINT8_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}
void KisGrayColorSpace::compositeErase(TQ_UINT8 *dst,
TQ_INT32 dstRowSize,
const TQ_UINT8 *src,
TQ_INT32 srcRowSize,
const TQ_UINT8 *srcAlphaMask,
TQ_INT32 maskRowStride,
TQ_INT32 rows,
TQ_INT32 cols,
TQ_UINT8 /*opacity*/)
{
TQ_INT32 i;
TQ_UINT8 srcAlpha;
while (rows-- > 0)
{
const TQ_UINT8 *s = src;
TQ_UINT8 *d = dst;
const TQ_UINT8 *mask = srcAlphaMask;
for (i = cols; i > 0; i--, s+=MAX_CHANNEL_GRAYSCALEA, d+=MAX_CHANNEL_GRAYSCALEA)
{
srcAlpha = s[PIXEL_GRAY_ALPHA];
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_BLEND(srcAlpha, OPACITY_OPAQUE, *mask);
mask++;
}
d[PIXEL_GRAY_ALPHA] = UINT8_MULT(srcAlpha, d[PIXEL_GRAY_ALPHA]);
}
dst += dstRowSize;
if(srcAlphaMask)
srcAlphaMask += maskRowStride;
src += srcRowSize;
}
}
void KisGrayColorSpace::compositeAlphaDarken(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride,
const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride,
const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride,
TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT8 opacity)
{
while (rows > 0) {
const TQ_UINT8 *src = srcRowStart;
TQ_UINT8 *dst = dstRowStart;
const TQ_UINT8 *mask = maskRowStart;
TQ_INT32 columns = numColumns;
while (columns > 0) {
TQ_UINT8 srcAlpha = src[PIXEL_GRAY_ALPHA];
TQ_UINT8 dstAlpha = dst[PIXEL_GRAY_ALPHA];
// apply the alphamask
if(mask != 0)
{
if(*mask != OPACITY_OPAQUE)
srcAlpha = UINT8_MULT(srcAlpha, *mask);
mask++;
}
if (opacity != OPACITY_OPAQUE) {
srcAlpha = UINT8_MULT(srcAlpha, opacity);
}
if (srcAlpha != OPACITY_TRANSPARENT && srcAlpha >= dstAlpha) {
dst[PIXEL_GRAY_ALPHA] = srcAlpha;
memcpy(dst, src, MAX_CHANNEL_GRAYSCALE * sizeof(TQ_UINT8));
}
columns--;
src += MAX_CHANNEL_GRAYSCALEA;
dst += MAX_CHANNEL_GRAYSCALEA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart)
maskRowStart += maskRowStride;
}
}