Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
koffice/chalk/colorspaces/rgb_u16/kis_rgb_u16_colorspace.cc

870 rindas
31 KiB

/*
* Copyright (c) 2002 Patrick Julien <freak@codepimps.org>
* Copyright (c) 2004 Boudewijn Rempt <boud@valdyas.org>
* Copyright (c) 2005 Adrian Page <adrian@pagenet.plus.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <limits.h>
#include <stdlib.h>
#include LCMS_HEADER
#include <tqimage.h>
#include <tqcolor.h>
#include <kdebug.h>
#include <tdelocale.h>
#include <tdeglobal.h>
#include "kis_rgb_u16_colorspace.h"
#include "kis_u16_base_colorspace.h"
#include "kis_color_conversions.h"
#include "kis_integer_maths.h"
namespace {
const TQ_INT32 MAX_CHANNEL_RGB = 3;
const TQ_INT32 MAX_CHANNEL_RGBA = 4;
}
// XXX: already defined is superclass?
//const TQ_UINT16 KisRgbU16ColorSpace::U16_OPACITY_OPAQUE;
//const TQ_UINT16 KisRgbU16ColorSpace::U16_OPACITY_TRANSPARENT;
KisRgbU16ColorSpace::KisRgbU16ColorSpace(KisColorSpaceFactoryRegistry * parent, KisProfile *p) :
KisU16BaseColorSpace(KisID("RGBA16", i18n("RGB (16-bit integer/channel)")), TYPE_BGRA_16, icSigRgbData, parent, p)
{
m_channels.push_back(new KisChannelInfo(i18n("Red"), i18n("R"), PIXEL_RED * sizeof(TQ_UINT16), KisChannelInfo::COLOR, KisChannelInfo::UINT16, sizeof(TQ_UINT16), TQColor(255,0,0)));
m_channels.push_back(new KisChannelInfo(i18n("Green"), i18n("G"), PIXEL_GREEN * sizeof(TQ_UINT16), KisChannelInfo::COLOR, KisChannelInfo::UINT16, sizeof(TQ_UINT16), TQColor(0,255,0)));
m_channels.push_back(new KisChannelInfo(i18n("Blue"), i18n("B"), PIXEL_BLUE * sizeof(TQ_UINT16), KisChannelInfo::COLOR, KisChannelInfo::UINT16, sizeof(TQ_UINT16), TQColor(0,0,255)));
m_channels.push_back(new KisChannelInfo(i18n("Alpha"), i18n("A"), PIXEL_ALPHA * sizeof(TQ_UINT16), KisChannelInfo::ALPHA, KisChannelInfo::UINT16, sizeof(TQ_UINT16)));
m_alphaPos = PIXEL_ALPHA * sizeof(TQ_UINT16);
init();
}
KisRgbU16ColorSpace::~KisRgbU16ColorSpace()
{
}
void KisRgbU16ColorSpace::setPixel(TQ_UINT8 *dst, TQ_UINT16 red, TQ_UINT16 green, TQ_UINT16 blue, TQ_UINT16 alpha) const
{
Pixel *dstPixel = reinterpret_cast<Pixel *>(dst);
dstPixel->red = red;
dstPixel->green = green;
dstPixel->blue = blue;
dstPixel->alpha = alpha;
}
void KisRgbU16ColorSpace::getPixel(const TQ_UINT8 *src, TQ_UINT16 *red, TQ_UINT16 *green, TQ_UINT16 *blue, TQ_UINT16 *alpha) const
{
const Pixel *srcPixel = reinterpret_cast<const Pixel *>(src);
*red = srcPixel->red;
*green = srcPixel->green;
*blue = srcPixel->blue;
*alpha = srcPixel->alpha;
}
void KisRgbU16ColorSpace::mixColors(const TQ_UINT8 **colors, const TQ_UINT8 *weights, TQ_UINT32 nColors, TQ_UINT8 *dst) const
{
TQ_UINT32 totalRed = 0, totalGreen = 0, totalBlue = 0, newAlpha = 0;
while (nColors--)
{
const Pixel *pixel = reinterpret_cast<const Pixel *>(*colors);
TQ_UINT32 alpha = pixel->alpha;
TQ_UINT32 alphaTimesWeight = UINT16_MULT(alpha, UINT8_TO_UINT16(*weights));
totalRed += UINT16_MULT(pixel->red, alphaTimesWeight);
totalGreen += UINT16_MULT(pixel->green, alphaTimesWeight);
totalBlue += UINT16_MULT(pixel->blue, alphaTimesWeight);
newAlpha += alphaTimesWeight;
weights++;
colors++;
}
Q_ASSERT(newAlpha <= U16_OPACITY_OPAQUE);
Pixel *dstPixel = reinterpret_cast<Pixel *>(dst);
dstPixel->alpha = newAlpha;
if (newAlpha > 0) {
totalRed = UINT16_DIVIDE(totalRed, newAlpha);
totalGreen = UINT16_DIVIDE(totalGreen, newAlpha);
totalBlue = UINT16_DIVIDE(totalBlue, newAlpha);
}
dstPixel->red = totalRed;
dstPixel->green = totalGreen;
dstPixel->blue = totalBlue;
}
void KisRgbU16ColorSpace::convolveColors(TQ_UINT8** colors, TQ_INT32* kernelValues, KisChannelInfo::enumChannelFlags channelFlags, TQ_UINT8 *dst,
TQ_INT32 factor, TQ_INT32 offset, TQ_INT32 nColors) const
{
TQ_INT32 totalRed = 0, totalGreen = 0, totalBlue = 0, totalAlpha = 0;
while (nColors--)
{
const Pixel * pixel = reinterpret_cast<const Pixel *>( *colors );
TQ_INT32 weight = *kernelValues;
if (weight != 0) {
totalRed += pixel->red * weight;
totalGreen += pixel->green * weight;
totalBlue += pixel->blue * weight;
totalAlpha +=pixel->alpha * weight;
}
colors++;
kernelValues++;
}
Pixel * p = reinterpret_cast< Pixel *>( dst );
if (channelFlags & KisChannelInfo::FLAG_COLOR) {
p->red = CLAMP( ( totalRed / factor) + offset, 0, TQ_UINT16_MAX);
p->green = CLAMP( ( totalGreen / factor) + offset, 0, TQ_UINT16_MAX);
p->blue = CLAMP( ( totalBlue / factor) + offset, 0, TQ_UINT16_MAX);
}
if (channelFlags & KisChannelInfo::FLAG_ALPHA) {
p->alpha = CLAMP((totalAlpha/ factor) + offset, 0, TQ_UINT16_MAX);
}
}
void KisRgbU16ColorSpace::invertColor(TQ_UINT8 * src, TQ_INT32 nPixels)
{
TQ_UINT32 psize = pixelSize();
while (nPixels--)
{
Pixel * p = reinterpret_cast< Pixel *>( src );
p->red = TQ_UINT16_MAX - p->red;
p->green = TQ_UINT16_MAX - p->green;
p->blue = TQ_UINT16_MAX - p->blue;
src += psize;
}
}
TQ_UINT8 KisRgbU16ColorSpace::intensity8(const TQ_UINT8 * src) const
{
const Pixel * p = reinterpret_cast<const Pixel *>( src );
return UINT16_TO_UINT8(static_cast<TQ_UINT16>((p->red * 0.30 + p->green * 0.59 + p->blue * 0.11) + 0.5));
}
TQValueVector<KisChannelInfo *> KisRgbU16ColorSpace::channels() const
{
return m_channels;
}
TQ_UINT32 KisRgbU16ColorSpace::nChannels() const
{
return MAX_CHANNEL_RGBA;
}
TQ_UINT32 KisRgbU16ColorSpace::nColorChannels() const
{
return MAX_CHANNEL_RGB;
}
TQ_UINT32 KisRgbU16ColorSpace::pixelSize() const
{
return MAX_CHANNEL_RGBA * sizeof(TQ_UINT16);
}
void KisRgbU16ColorSpace::compositeOver(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
while (rows > 0) {
const TQ_UINT16 *src = reinterpret_cast<const TQ_UINT16 *>(srcRowStart);
TQ_UINT16 *dst = reinterpret_cast<TQ_UINT16 *>(dstRowStart);
const TQ_UINT8 *mask = maskRowStart;
TQ_INT32 columns = numColumns;
while (columns > 0) {
TQ_UINT16 srcAlpha = src[PIXEL_ALPHA];
// apply the alphamask
if (mask != 0) {
TQ_UINT8 U8_mask = *mask;
if (U8_mask != OPACITY_OPAQUE) {
srcAlpha = UINT16_MULT(srcAlpha, UINT8_TO_UINT16(U8_mask));
}
mask++;
}
if (srcAlpha != U16_OPACITY_TRANSPARENT) {
if (opacity != U16_OPACITY_OPAQUE) {
srcAlpha = UINT16_MULT(srcAlpha, opacity);
}
if (srcAlpha == U16_OPACITY_OPAQUE) {
memcpy(dst, src, MAX_CHANNEL_RGBA * sizeof(TQ_UINT16));
} else {
TQ_UINT16 dstAlpha = dst[PIXEL_ALPHA];
TQ_UINT16 srcBlend;
if (dstAlpha == U16_OPACITY_OPAQUE) {
srcBlend = srcAlpha;
} else {
TQ_UINT16 newAlpha = dstAlpha + UINT16_MULT(U16_OPACITY_OPAQUE - dstAlpha, srcAlpha);
dst[PIXEL_ALPHA] = newAlpha;
if (newAlpha != 0) {
srcBlend = UINT16_DIVIDE(srcAlpha, newAlpha);
} else {
srcBlend = srcAlpha;
}
}
if (srcBlend == U16_OPACITY_OPAQUE) {
memcpy(dst, src, MAX_CHANNEL_RGB * sizeof(TQ_UINT16));
} else {
dst[PIXEL_RED] = UINT16_BLEND(src[PIXEL_RED], dst[PIXEL_RED], srcBlend);
dst[PIXEL_GREEN] = UINT16_BLEND(src[PIXEL_GREEN], dst[PIXEL_GREEN], srcBlend);
dst[PIXEL_BLUE] = UINT16_BLEND(src[PIXEL_BLUE], dst[PIXEL_BLUE], srcBlend);
}
}
}
columns--;
src += MAX_CHANNEL_RGBA;
dst += MAX_CHANNEL_RGBA;
}
rows--;
srcRowStart += srcRowStride;
dstRowStart += dstRowStride;
if(maskRowStart) {
maskRowStart += maskRowStride;
}
}
}
#define COMMON_COMPOSITE_OP_PROLOG() \
while (rows > 0) { \
\
const TQ_UINT16 *src = reinterpret_cast<const TQ_UINT16 *>(srcRowStart); \
TQ_UINT16 *dst = reinterpret_cast<TQ_UINT16 *>(dstRowStart); \
TQ_INT32 columns = numColumns; \
const TQ_UINT8 *mask = maskRowStart; \
\
while (columns > 0) { \
\
TQ_UINT16 srcAlpha = src[PIXEL_ALPHA]; \
TQ_UINT16 dstAlpha = dst[PIXEL_ALPHA]; \
\
srcAlpha = TQMIN(srcAlpha, dstAlpha); \
\
if (mask != 0) { \
TQ_UINT8 U8_mask = *mask; \
\
if (U8_mask != OPACITY_OPAQUE) { \
srcAlpha = UINT16_MULT(srcAlpha, UINT8_TO_UINT16(U8_mask)); \
} \
mask++; \
} \
\
if (srcAlpha != U16_OPACITY_TRANSPARENT) { \
\
if (opacity != U16_OPACITY_OPAQUE) { \
srcAlpha = UINT16_MULT(srcAlpha, opacity); \
} \
\
TQ_UINT16 srcBlend; \
\
if (dstAlpha == U16_OPACITY_OPAQUE) { \
srcBlend = srcAlpha; \
} else { \
TQ_UINT16 newAlpha = dstAlpha + UINT16_MULT(U16_OPACITY_OPAQUE - dstAlpha, srcAlpha); \
dst[PIXEL_ALPHA] = newAlpha; \
\
if (newAlpha != 0) { \
srcBlend = UINT16_DIVIDE(srcAlpha, newAlpha); \
} else { \
srcBlend = srcAlpha; \
} \
}
#define COMMON_COMPOSITE_OP_EPILOG() \
} \
\
columns--; \
src += MAX_CHANNEL_RGBA; \
dst += MAX_CHANNEL_RGBA; \
} \
\
rows--; \
srcRowStart += srcRowStride; \
dstRowStart += dstRowStride; \
if(maskRowStart) { \
maskRowStart += maskRowStride; \
} \
}
void KisRgbU16ColorSpace::compositeMultiply(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = UINT16_MULT(srcColor, dstColor);
dst[channel] = UINT16_BLEND(srcColor, dstColor, srcBlend);
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeDivide(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = TQMIN((dstColor * (UINT16_MAX + 1u) + (srcColor / 2u)) / (1u + srcColor), UINT16_MAX);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeScreen(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = UINT16_MAX - UINT16_MULT(UINT16_MAX - dstColor, UINT16_MAX - srcColor);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeOverlay(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = UINT16_MULT(dstColor, dstColor + 2u * UINT16_MULT(srcColor, UINT16_MAX - dstColor));
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeDodge(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = TQMIN((dstColor * (UINT16_MAX + 1u)) / (UINT16_MAX + 1u - srcColor), UINT16_MAX);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeBurn(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = kMin(((UINT16_MAX - dstColor) * (UINT16_MAX + 1u)) / (srcColor + 1u), UINT16_MAX);
srcColor = kClamp(UINT16_MAX - srcColor, 0u, UINT16_MAX);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeDarken(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = TQMIN(srcColor, dstColor);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeLighten(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
for (int channel = 0; channel < MAX_CHANNEL_RGB; channel++) {
TQ_UINT16 srcColor = src[channel];
TQ_UINT16 dstColor = dst[channel];
srcColor = TQMAX(srcColor, dstColor);
TQ_UINT16 newColor = UINT16_BLEND(srcColor, dstColor, srcBlend);
dst[channel] = newColor;
}
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeHue(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
float FSrcRed = static_cast<float>(src[PIXEL_RED]) / UINT16_MAX;
float FSrcGreen = static_cast<float>(src[PIXEL_GREEN]) / UINT16_MAX;
float FSrcBlue = static_cast<float>(src[PIXEL_BLUE]) / UINT16_MAX;
TQ_UINT16 dstRed = dst[PIXEL_RED];
TQ_UINT16 dstGreen = dst[PIXEL_GREEN];
TQ_UINT16 dstBlue = dst[PIXEL_BLUE];
float FDstRed = static_cast<float>(dstRed) / UINT16_MAX;
float FDstGreen = static_cast<float>(dstGreen) / UINT16_MAX;
float FDstBlue = static_cast<float>(dstBlue) / UINT16_MAX;
float srcHue;
float srcSaturation;
float srcValue;
float dstHue;
float dstSaturation;
float dstValue;
RGBToHSV(FSrcRed, FSrcGreen, FSrcBlue, &srcHue, &srcSaturation, &srcValue);
RGBToHSV(FDstRed, FDstGreen, FDstBlue, &dstHue, &dstSaturation, &dstValue);
HSVToRGB(srcHue, dstSaturation, dstValue, &FSrcRed, &FSrcGreen, &FSrcBlue);
TQ_UINT16 srcRed = static_cast<TQ_UINT16>(FSrcRed * UINT16_MAX + 0.5);
TQ_UINT16 srcGreen = static_cast<TQ_UINT16>(FSrcGreen * UINT16_MAX + 0.5);
TQ_UINT16 srcBlue = static_cast<TQ_UINT16>(FSrcBlue * UINT16_MAX + 0.5);
dst[PIXEL_RED] = UINT16_BLEND(srcRed, dstRed, srcBlend);
dst[PIXEL_GREEN] = UINT16_BLEND(srcGreen, dstGreen, srcBlend);
dst[PIXEL_BLUE] = UINT16_BLEND(srcBlue, dstBlue, srcBlend);
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeSaturation(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
float FSrcRed = static_cast<float>(src[PIXEL_RED]) / UINT16_MAX;
float FSrcGreen = static_cast<float>(src[PIXEL_GREEN]) / UINT16_MAX;
float FSrcBlue = static_cast<float>(src[PIXEL_BLUE]) / UINT16_MAX;
TQ_UINT16 dstRed = dst[PIXEL_RED];
TQ_UINT16 dstGreen = dst[PIXEL_GREEN];
TQ_UINT16 dstBlue = dst[PIXEL_BLUE];
float FDstRed = static_cast<float>(dstRed) / UINT16_MAX;
float FDstGreen = static_cast<float>(dstGreen) / UINT16_MAX;
float FDstBlue = static_cast<float>(dstBlue) / UINT16_MAX;
float srcHue;
float srcSaturation;
float srcValue;
float dstHue;
float dstSaturation;
float dstValue;
RGBToHSV(FSrcRed, FSrcGreen, FSrcBlue, &srcHue, &srcSaturation, &srcValue);
RGBToHSV(FDstRed, FDstGreen, FDstBlue, &dstHue, &dstSaturation, &dstValue);
HSVToRGB(dstHue, srcSaturation, dstValue, &FSrcRed, &FSrcGreen, &FSrcBlue);
TQ_UINT16 srcRed = static_cast<TQ_UINT16>(FSrcRed * UINT16_MAX + 0.5);
TQ_UINT16 srcGreen = static_cast<TQ_UINT16>(FSrcGreen * UINT16_MAX + 0.5);
TQ_UINT16 srcBlue = static_cast<TQ_UINT16>(FSrcBlue * UINT16_MAX + 0.5);
dst[PIXEL_RED] = UINT16_BLEND(srcRed, dstRed, srcBlend);
dst[PIXEL_GREEN] = UINT16_BLEND(srcGreen, dstGreen, srcBlend);
dst[PIXEL_BLUE] = UINT16_BLEND(srcBlue, dstBlue, srcBlend);
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeValue(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
float FSrcRed = static_cast<float>(src[PIXEL_RED]) / UINT16_MAX;
float FSrcGreen = static_cast<float>(src[PIXEL_GREEN]) / UINT16_MAX;
float FSrcBlue = static_cast<float>(src[PIXEL_BLUE]) / UINT16_MAX;
TQ_UINT16 dstRed = dst[PIXEL_RED];
TQ_UINT16 dstGreen = dst[PIXEL_GREEN];
TQ_UINT16 dstBlue = dst[PIXEL_BLUE];
float FDstRed = static_cast<float>(dstRed) / UINT16_MAX;
float FDstGreen = static_cast<float>(dstGreen) / UINT16_MAX;
float FDstBlue = static_cast<float>(dstBlue) / UINT16_MAX;
float srcHue;
float srcSaturation;
float srcValue;
float dstHue;
float dstSaturation;
float dstValue;
RGBToHSV(FSrcRed, FSrcGreen, FSrcBlue, &srcHue, &srcSaturation, &srcValue);
RGBToHSV(FDstRed, FDstGreen, FDstBlue, &dstHue, &dstSaturation, &dstValue);
HSVToRGB(dstHue, dstSaturation, srcValue, &FSrcRed, &FSrcGreen, &FSrcBlue);
TQ_UINT16 srcRed = static_cast<TQ_UINT16>(FSrcRed * UINT16_MAX + 0.5);
TQ_UINT16 srcGreen = static_cast<TQ_UINT16>(FSrcGreen * UINT16_MAX + 0.5);
TQ_UINT16 srcBlue = static_cast<TQ_UINT16>(FSrcBlue * UINT16_MAX + 0.5);
dst[PIXEL_RED] = UINT16_BLEND(srcRed, dstRed, srcBlend);
dst[PIXEL_GREEN] = UINT16_BLEND(srcGreen, dstGreen, srcBlend);
dst[PIXEL_BLUE] = UINT16_BLEND(srcBlue, dstBlue, srcBlend);
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeColor(TQ_UINT8 *dstRowStart, TQ_INT32 dstRowStride, const TQ_UINT8 *srcRowStart, TQ_INT32 srcRowStride, const TQ_UINT8 *maskRowStart, TQ_INT32 maskRowStride, TQ_INT32 rows, TQ_INT32 numColumns, TQ_UINT16 opacity)
{
COMMON_COMPOSITE_OP_PROLOG();
{
float FSrcRed = static_cast<float>(src[PIXEL_RED]) / UINT16_MAX;
float FSrcGreen = static_cast<float>(src[PIXEL_GREEN]) / UINT16_MAX;
float FSrcBlue = static_cast<float>(src[PIXEL_BLUE]) / UINT16_MAX;
TQ_UINT16 dstRed = dst[PIXEL_RED];
TQ_UINT16 dstGreen = dst[PIXEL_GREEN];
TQ_UINT16 dstBlue = dst[PIXEL_BLUE];
float FDstRed = static_cast<float>(dstRed) / UINT16_MAX;
float FDstGreen = static_cast<float>(dstGreen) / UINT16_MAX;
float FDstBlue = static_cast<float>(dstBlue) / UINT16_MAX;
float srcHue;
float srcSaturation;
float srcLightness;
float dstHue;
float dstSaturation;
float dstLightness;
RGBToHSL(FSrcRed, FSrcGreen, FSrcBlue, &srcHue, &srcSaturation, &srcLightness);
RGBToHSL(FDstRed, FDstGreen, FDstBlue, &dstHue, &dstSaturation, &dstLightness);
HSLToRGB(srcHue, srcSaturation, dstLightness, &FSrcRed, &FSrcGreen, &FSrcBlue);
TQ_UINT16 srcRed = static_cast<TQ_UINT16>(FSrcRed * UINT16_MAX + 0.5);
TQ_UINT16 srcGreen = static_cast<TQ_UINT16>(FSrcGreen * UINT16_MAX + 0.5);
TQ_UINT16 srcBlue = static_cast<TQ_UINT16>(FSrcBlue * UINT16_MAX + 0.5);
dst[PIXEL_RED] = UINT16_BLEND(srcRed, dstRed, srcBlend);
dst[PIXEL_GREEN] = UINT16_BLEND(srcGreen, dstGreen, srcBlend);
dst[PIXEL_BLUE] = UINT16_BLEND(srcBlue, dstBlue, srcBlend);
}
COMMON_COMPOSITE_OP_EPILOG();
}
void KisRgbU16ColorSpace::compositeErase(TQ_UINT8 *dst,
TQ_INT32 dstRowSize,
const TQ_UINT8 *src,
TQ_INT32 srcRowSize,
const TQ_UINT8 *srcAlphaMask,
TQ_INT32 maskRowStride,
TQ_INT32 rows,
TQ_INT32 cols,
TQ_UINT16 /*opacity*/)
{
while (rows-- > 0)
{
const Pixel *s = reinterpret_cast<const Pixel *>(src);
Pixel *d = reinterpret_cast<Pixel *>(dst);
const TQ_UINT8 *mask = srcAlphaMask;
for (TQ_INT32 i = cols; i > 0; i--, s++, d++)
{
TQ_UINT16 srcAlpha = s->alpha;
// apply the alphamask
if (mask != 0) {
TQ_UINT8 U8_mask = *mask;
if (U8_mask != OPACITY_OPAQUE) {
srcAlpha = UINT16_BLEND(srcAlpha, U16_OPACITY_OPAQUE, UINT8_TO_UINT16(U8_mask));
}
mask++;
}
d->alpha = UINT16_MULT(srcAlpha, d->alpha);
}
dst += dstRowSize;
src += srcRowSize;
if(srcAlphaMask) {
srcAlphaMask += maskRowStride;
}
}
}
void KisRgbU16ColorSpace::bitBlt(TQ_UINT8 *dst,
TQ_INT32 dstRowStride,
const TQ_UINT8 *src,
TQ_INT32 srcRowStride,
const TQ_UINT8 *mask,
TQ_INT32 maskRowStride,
TQ_UINT8 U8_opacity,
TQ_INT32 rows,
TQ_INT32 cols,
const KisCompositeOp& op)
{
TQ_UINT16 opacity = UINT8_TO_UINT16(U8_opacity);
switch (op.op()) {
case COMPOSITE_UNDEF:
// Undefined == no composition
break;
case COMPOSITE_OVER:
compositeOver(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_IN:
//compositeIn(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
case COMPOSITE_OUT:
//compositeOut(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_ATOP:
//compositeAtop(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_XOR:
//compositeXor(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_PLUS:
//compositePlus(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_MINUS:
//compositeMinus(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_ADD:
//compositeAdd(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_SUBTRACT:
//compositeSubtract(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_DIFF:
//compositeDiff(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_MULT:
compositeMultiply(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_DIVIDE:
compositeDivide(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_BUMPMAP:
//compositeBumpmap(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_COPY:
compositeCopy(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, U8_opacity);
break;
case COMPOSITE_COPY_RED:
//compositeCopyRed(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_COPY_GREEN:
//compositeCopyGreen(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_COPY_BLUE:
//compositeCopyBlue(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_COPY_OPACITY:
//compositeCopyOpacity(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_CLEAR:
//compositeClear(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_DISSOLVE:
//compositeDissolve(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_DISPLACE:
//compositeDisplace(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
#if 0
case COMPOSITE_MODULATE:
compositeModulate(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_THRESHOLD:
compositeThreshold(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
#endif
case COMPOSITE_NO:
// No composition.
break;
case COMPOSITE_DARKEN:
compositeDarken(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_LIGHTEN:
compositeLighten(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_HUE:
compositeHue(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_SATURATION:
compositeSaturation(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_VALUE:
compositeValue(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_COLOR:
compositeColor(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_COLORIZE:
//compositeColorize(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_LUMINIZE:
//compositeLuminize(pixelSize(), dst, dstRowStride, src, srcRowStride, rows, cols, opacity);
break;
case COMPOSITE_SCREEN:
compositeScreen(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_OVERLAY:
compositeOverlay(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_ERASE:
compositeErase(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_DODGE:
compositeDodge(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_BURN:
compositeBurn(dst, dstRowStride, src, srcRowStride, mask, maskRowStride, rows, cols, opacity);
break;
case COMPOSITE_ALPHA_DARKEN:
abstractCompositeAlphaDarken<TQ_UINT16, U16Mult, Uint8ToU16, U16OpacityTest,
PIXEL_ALPHA, MAX_CHANNEL_RGB, MAX_CHANNEL_RGBA>(
dst, dstRowStride, src, srcRowStride, mask, maskRowStride,
rows, cols, opacity, U16Mult(), Uint8ToU16(), U16OpacityTest());
break;
default:
break;
}
}
KisCompositeOpList KisRgbU16ColorSpace::userVisiblecompositeOps() const
{
KisCompositeOpList list;
list.append(KisCompositeOp(COMPOSITE_OVER));
list.append(KisCompositeOp(COMPOSITE_ALPHA_DARKEN));
list.append(KisCompositeOp(COMPOSITE_MULT));
list.append(KisCompositeOp(COMPOSITE_BURN));
list.append(KisCompositeOp(COMPOSITE_DODGE));
list.append(KisCompositeOp(COMPOSITE_DIVIDE));
list.append(KisCompositeOp(COMPOSITE_SCREEN));
list.append(KisCompositeOp(COMPOSITE_OVERLAY));
list.append(KisCompositeOp(COMPOSITE_DARKEN));
list.append(KisCompositeOp(COMPOSITE_LIGHTEN));
list.append(KisCompositeOp(COMPOSITE_HUE));
list.append(KisCompositeOp(COMPOSITE_SATURATION));
list.append(KisCompositeOp(COMPOSITE_VALUE));
list.append(KisCompositeOp(COMPOSITE_COLOR));
return list;
}