You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
koffice/chalk/core/kis_transform_worker.cc

677 lines
21 KiB

/*
* Copyright (c) 2004 Michael Thaler <michael.thaler@physik.tu-muenchen.de> filters
* Copyright (c) 2005 Casper Boemann <cbr@boemann.dk>
* Copyright (c) 2005 Boudewijn Rempt <boud@valdyas.org> right angle rotators
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <kdebug.h>
#include <klocale.h>
#include "kis_debug_areas.h"
#include "kis_paint_device.h"
#include "kis_selection.h"
#include "kis_transform_worker.h"
#include "kis_progress_display_interface.h"
#include "kis_iterators_pixel.h"
#include "kis_filter_strategy.h"
#include "kis_layer.h"
#include "kis_painter.h"
KisTransformWorker::KisTransformWorker(KisPaintDeviceSP dev, double xscale, double yscale,
double xshear, double yshear, double rotation,
TQ_INT32 xtranslate, TQ_INT32 ytranslate,
KisProgressDisplayInterface *progress, KisFilterStrategy *filter, bool fixBorderAlpha)
{
m_dev= dev;
m_xscale = xscale;
m_yscale = yscale;
m_xshear = xshear;
m_yshear = yshear;
m_rotation = rotation,
m_xtranslate = xtranslate;
m_ytranslate = ytranslate;
m_progress = progress;
m_filter = filter;
m_fixBorderAlpha = fixBorderAlpha;
}
void KisTransformWorker::rotateNone(KisPaintDeviceSP src, KisPaintDeviceSP dst)
{
KisSelectionSP dstSelection;
TQ_INT32 pixelSize = src->pixelSize();
TQRect r;
KisColorSpace *cs = src->colorSpace();
if(src->hasSelection())
{
r = src->selection()->selectedExactRect();
dstSelection = dst->selection();
}
else
{
r = src->exactBounds();
dstSelection = new KisSelection(dst); // essentially a dummy to be deleted
}
KisHLineIteratorPixel hit = src->createHLineIterator(r.x(), r.top(), r.width(), true);
KisHLineIterator vit = dst->createHLineIterator(r.x(), r.top(), r.width(), true);
KisHLineIterator dstSelIt = dstSelection->createHLineIterator(r.x(), r.top(), r.width(), true);
for (TQ_INT32 i = 0; i < r.height(); ++i) {
while (!hit.isDone()) {
if (hit.isSelected()) {
memcpy(vit.rawData(), hit.rawData(), pixelSize);
// XXX: Should set alpha = alpha*(1-selectedness)
cs->setAlpha(hit.rawData(), 0, 1);
}
*(dstSelIt.rawData()) = hit.selectedness();
++hit;
++vit;
++dstSelIt;
}
hit.nextRow();
vit.nextRow();
dstSelIt.nextRow();
//progress info
m_progressStep += r.width();
if(m_lastProgressReport != (m_progressStep * 100) / m_progressTotalSteps)
{
m_lastProgressReport = (m_progressStep * 100) / m_progressTotalSteps;
emit notifyProgress(m_lastProgressReport);
}
if (m_cancelRequested) {
break;
}
}
}
void KisTransformWorker::rotateRight90(KisPaintDeviceSP src, KisPaintDeviceSP dst)
{
KisSelectionSP dstSelection;
TQ_INT32 pixelSize = src->pixelSize();
TQRect r;
KisColorSpace *cs = src->colorSpace();
if(src->hasSelection())
{
r = src->selection()->selectedExactRect();
dstSelection = dst->selection();
}
else
{
r = src->exactBounds();
dstSelection = new KisSelection(dst); // essentially a dummy to be deleted
}
for (TQ_INT32 y = r.bottom(); y >= r.top(); --y) {
KisHLineIteratorPixel hit = src->createHLineIterator(r.x(), y, r.width(), true);
KisVLineIterator vit = dst->createVLineIterator(-y, r.x(), r.width(), true);
KisVLineIterator dstSelIt = dstSelection->createVLineIterator(-y, r.x(), r.width(), true);
while (!hit.isDone()) {
if (hit.isSelected()) {
memcpy(vit.rawData(), hit.rawData(), pixelSize);
// XXX: Should set alpha = alpha*(1-selectedness)
cs->setAlpha(hit.rawData(), 0, 1);
}
*(dstSelIt.rawData()) = hit.selectedness();
++hit;
++vit;
++dstSelIt;
}
//progress info
m_progressStep += r.width();
if(m_lastProgressReport != (m_progressStep * 100) / m_progressTotalSteps)
{
m_lastProgressReport = (m_progressStep * 100) / m_progressTotalSteps;
emit notifyProgress(m_lastProgressReport);
}
if (m_cancelRequested) {
break;
}
}
}
void KisTransformWorker::rotateLeft90(KisPaintDeviceSP src, KisPaintDeviceSP dst)
{
kdDebug() << "rotateLeft90 called\n";
KisSelectionSP dstSelection;
TQ_INT32 pixelSize = src->pixelSize();
TQRect r;
KisColorSpace *cs = src->colorSpace();
if(src->hasSelection())
{
r = src->selection()->selectedExactRect();
dstSelection = dst->selection();
}
else
{
r = src->exactBounds();
dstSelection = new KisSelection(dst); // essentially a dummy to be deleted
}
TQ_INT32 x = 0;
for (TQ_INT32 y = r.top(); y <= r.bottom(); ++y) {
// Read the horizontal line from back to front, write onto the vertical column
KisHLineIteratorPixel hit = src->createHLineIterator(r.x(), y, r.width(), true);
KisVLineIterator vit = dst->createVLineIterator(y, -r.x() - r.width(), r.width(), true);
KisVLineIterator dstSelIt = dstSelection->createVLineIterator(y, -r.x() - r.width(), r.width(), true);
hit += r.width() - 1;
while (!vit.isDone()) {
if (hit.isSelected()) {
memcpy(vit.rawData(), hit.rawData(), pixelSize);
// XXX: Should set alpha = alpha*(1-selectedness)
cs->setAlpha(hit.rawData(), 0, 1);
}
*(dstSelIt.rawData()) = hit.selectedness();
--hit;
++vit;
++dstSelIt;
}
++x;
//progress info
m_progressStep += r.width();
if(m_lastProgressReport != (m_progressStep * 100) / m_progressTotalSteps)
{
m_lastProgressReport = (m_progressStep * 100) / m_progressTotalSteps;
emit notifyProgress(m_lastProgressReport);
}
if (m_cancelRequested) {
break;
}
}
}
void KisTransformWorker::rotate180(KisPaintDeviceSP src, KisPaintDeviceSP dst)
{
kdDebug() << "Rotating 180\n";
KisSelectionSP dstSelection;
TQ_INT32 pixelSize = src->pixelSize();
TQRect r;
KisColorSpace *cs = src->colorSpace();
if(src->hasSelection())
{
r = src->selection()->selectedExactRect();
dstSelection = dst->selection();
}
else
{
r = src->exactBounds();
dstSelection = new KisSelection(dst); // essentially a dummy to be deleted
}
for (TQ_INT32 y = r.top(); y <= r.bottom(); ++y) {
KisHLineIteratorPixel srcIt = src->createHLineIterator(r.x(), y, r.width(), true);
KisHLineIterator dstIt = dst->createHLineIterator(-r.x() - r.width(), -y, r.width(), true);
KisHLineIterator dstSelIt = dstSelection->createHLineIterator(-r.x() - r.width(), -y, r.width(), true);
srcIt += r.width() - 1;
while (!dstIt.isDone()) {
if (srcIt.isSelected()) {
memcpy(dstIt.rawData(), srcIt.rawData(), pixelSize);
// XXX: Should set alpha = alpha*(1-selectedness)
cs->setAlpha(srcIt.rawData(), 0, 1);
}
*(dstSelIt.rawData()) = srcIt.selectedness();
--srcIt;
++dstIt;
++dstSelIt;
}
//progress info
m_progressStep += r.width();
if(m_lastProgressReport != (m_progressStep * 100) / m_progressTotalSteps)
{
m_lastProgressReport = (m_progressStep * 100) / m_progressTotalSteps;
emit notifyProgress(m_lastProgressReport);
}
if (m_cancelRequested) {
break;
}
}
}
template <class iter> iter createIterator(KisPaintDevice *dev, TQ_INT32 start, TQ_INT32 lineNum, TQ_INT32 len);
template <> KisHLineIteratorPixel createIterator <KisHLineIteratorPixel>
(KisPaintDevice *dev, TQ_INT32 start, TQ_INT32 lineNum, TQ_INT32 len)
{
return dev->createHLineIterator(start, lineNum, len, true);
}
template <> KisVLineIteratorPixel createIterator <KisVLineIteratorPixel>
(KisPaintDevice *dev, TQ_INT32 start, TQ_INT32 lineNum, TQ_INT32 len)
{
return dev->createVLineIterator(lineNum, start, len, true);
}
template <class iter> void calcDimensions (KisPaintDevice *dev, TQ_INT32 &srcStart, TQ_INT32 &srcLen, TQ_INT32 &firstLine, TQ_INT32 &numLines);
template <> void calcDimensions <KisHLineIteratorPixel>
(KisPaintDevice *dev, TQ_INT32 &srcStart, TQ_INT32 &srcLen, TQ_INT32 &firstLine, TQ_INT32 &numLines)
{
if(dev->hasSelection())
{
TQRect r = dev->selection()->selectedExactRect();
r.rect(&srcStart, &firstLine, &srcLen, &numLines);
}
else
dev->exactBounds(srcStart, firstLine, srcLen, numLines);
}
template <> void calcDimensions <KisVLineIteratorPixel>
(KisPaintDevice *dev, TQ_INT32 &srcStart, TQ_INT32 &srcLen, TQ_INT32 &firstLine, TQ_INT32 &numLines)
{
if(dev->hasSelection())
{
TQRect r = dev->selection()->selectedExactRect();
r.rect(&firstLine, &srcStart, &numLines, &srcLen);
}
else
dev->exactBounds(firstLine, srcStart, numLines, srcLen);
}
struct FilterValues
{
TQ_UINT8 numWeights;
TQ_UINT8 *weight;
~FilterValues() {delete [] weight;}
};
template <class T> void KisTransformWorker::transformPass(KisPaintDevice *src, KisPaintDevice *dst, double floatscale, double shear, TQ_INT32 dx, KisFilterStrategy *filterStrategy, bool fixBorderAlpha)
{
TQ_INT32 lineNum,srcStart,firstLine,srcLen,numLines;
TQ_INT32 center, begin, end; /* filter calculation variables */
TQ_UINT8 *data;
TQ_UINT8 pixelSize = src->pixelSize();
KisSelectionSP dstSelection;
KisColorSpace * cs = src->colorSpace();
TQ_INT32 scale;
TQ_INT32 scaleDenom;
TQ_INT32 shearFracOffset;
if(src->hasSelection())
dstSelection = dst->selection();
else
dstSelection = new KisSelection(dst); // essentially a dummy to be deleted
calcDimensions <T>(src, srcStart, srcLen, firstLine, numLines);
scale = int(floatscale*srcLen);
scaleDenom = srcLen;
if(scaleDenom == 0)
return;
TQ_INT32 support = filterStrategy->intSupport();
TQ_INT32 dstLen, dstStart;
TQ_INT32 invfscale = 256;
// handle magnification/minification
if(abs(scale) < scaleDenom)
{
support *= scaleDenom;
support /= scale;
invfscale *= scale;
invfscale /= scaleDenom;
if(scale < 0) // handle mirroring
{
support = -support;
invfscale = -invfscale;
}
}
// handle mirroring
if(scale < 0)
dstLen = - scale;
else
dstLen = scale;
// Calculate extra length (in each side) needed due to shear
TQ_INT32 extraLen = (support+256)>>8 + 1;
TQ_UINT8 *tmpLine = new TQ_UINT8[(srcLen +2*extraLen)* pixelSize];
Q_CHECK_PTR(tmpLine);
TQ_UINT8 *tmpSel = new TQ_UINT8[srcLen+2*extraLen];
Q_CHECK_PTR(tmpSel);
//allocate space for colors
const TQ_UINT8 **colors = new const TQ_UINT8 *[2*support+1];
// Precalculate weights
FilterValues *filterWeights = new FilterValues[256];
for(int center = 0; center<256; ++center)
{
TQ_INT32 begin = (255 + center - support)>>8; // takes ceiling by adding 255
TQ_INT32 span = ((center + support)>>8) - begin + 1; // takes floor to get end. Subtracts begin to get span
TQ_INT32 t = (((begin<<8) - center) * invfscale)>>8;
TQ_INT32 dt = invfscale;
filterWeights[center].weight = new TQ_UINT8[span];
//printf("%d (",center);
TQ_UINT32 sum=0;
for(int num = 0; num<span; ++num)
{
TQ_UINT32 tmpw = filterStrategy->intValueAt(t) * invfscale;
tmpw >>=8;
filterWeights[center].weight[num] = tmpw;
//printf(" %d=%d,%d",t,filterWeights[center].weight[num],tmpw);
t += dt;
sum+=tmpw;
}
//printf(" )%d sum =%d",span,sum);
if(sum!=255)
{
double fixfactor= 255.0/sum;
sum=0;
for(int num = 0; num<span; ++num)
{
filterWeights[center].weight[num] = int(filterWeights[center].weight[num] * fixfactor);
sum+=filterWeights[center].weight[num];
}
}
//printf(" sum2 =%d",sum);
int num = 0;
while(sum<255 && num*2<span)
{
filterWeights[center].weight[span/2 + num]++;
++sum;
if(sum<255 && num<span/2)
{
filterWeights[center].weight[span/2 - num - 1]++;
++sum;
}
++num;
}
//printf(" sum3 =%d\n",sum);
filterWeights[center].numWeights = span;
}
for(lineNum = firstLine; lineNum < firstLine+numLines; lineNum++)
{
if(scale < 0)
dstStart = srcStart * scale / scaleDenom - dstLen + dx;
else
dstStart = (srcStart) * scale / scaleDenom + dx;
shearFracOffset = -int( 256 * (lineNum * shear - floor(lineNum * shear)));
dstStart += int(floor(lineNum * shear));
// Build a temporary line
T srcIt = createIterator <T>(src, srcStart - extraLen, lineNum, srcLen+2*extraLen);
TQ_INT32 i = 0;
while(!srcIt.isDone())
{
TQ_UINT8 *data;
data = srcIt.rawData();
memcpy(&tmpLine[i*pixelSize], data, pixelSize);
if(srcIt.isSelected())
{
// XXX: Should set alpha = alpha*(1-selectedness)
cs->setAlpha(data, 0, 1);
tmpSel[i] = 255;
}
else {
tmpSel[i] = 0;
}
++srcIt;
i++;
}
T dstIt = createIterator <T>(dst, dstStart, lineNum, dstLen);
T dstSelIt = createIterator <T>(dstSelection, dstStart, lineNum, dstLen);
i=0;
while(!dstIt.isDone())
{
if(scaleDenom<2500)
center = ((i<<8) * scaleDenom) / scale;
else
{
if(scaleDenom<46000) // real limit is actually 46340 pixels
center = ((i * scaleDenom) / scale)<<8;
else
center = ((i<<8)/scale * scaleDenom) / scale; // XXX fails for sizes over 2^23 pixels src width
}
if(scale < 0)
center += srcLen<<8;
center += 128*scaleDenom/scale;//xxx doesn't work for scale<0;
center += (extraLen<<8) + shearFracOffset;
// find contributing pixels
begin = (255 + center - support)>>8; // takes ceiling by adding 255
end = (center + support)>>8; // takes floor
////printf("sup=%d begin=%d end=%d",support,begin,end);
TQ_UINT8 selectedness = tmpSel[center>>8];
if(selectedness)
{
int num=0;
for(int srcpos = begin; srcpos <= end; ++srcpos)
{
colors[num] = &tmpLine[srcpos*pixelSize];
num++;
}
data = dstIt.rawData();
cs->mixColors(colors, filterWeights[center&255].weight, filterWeights[center&255].numWeights, data);
//possibly fix the alpha of the border if user wants it
if(fixBorderAlpha && (i==0 || i==dstLen-1))
cs->setAlpha(data, cs->getAlpha(&tmpLine[(center>>8)*pixelSize]), 1);
data = dstSelIt.rawData();
*data = selectedness;
}
++dstSelIt;
++dstIt;
i++;
}
//progress info
m_progressStep += dstLen;
if(m_lastProgressReport != (m_progressStep * 100) / m_progressTotalSteps)
{
m_lastProgressReport = (m_progressStep * 100) / m_progressTotalSteps;
emit notifyProgress(m_lastProgressReport);
}
if (m_cancelRequested) {
break;
}
}
delete [] colors;
delete [] tmpLine;
delete [] tmpSel;
delete [] filterWeights;
}
bool KisTransformWorker::run()
{
//progress info
m_cancelRequested = false;
if(m_progress)
m_progress->setSubject(this, true, true);
m_progressTotalSteps = 0;
m_progressStep = 0;
TQRect r;
if(m_dev->hasSelection())
r = m_dev->selection()->selectedExactRect();
else
r = m_dev->exactBounds();
KisPaintDeviceSP tmpdev1 = new KisPaintDevice(m_dev->colorSpace(),"transform_tmpdev1");;
KisPaintDeviceSP tmpdev2 = new KisPaintDevice(m_dev->colorSpace(),"transform_tmpdev2");;
KisPaintDeviceSP tmpdev3 = new KisPaintDevice(m_dev->colorSpace(),"transform_tmpdev2");;
KisPaintDeviceSP srcdev = m_dev;
double xscale = m_xscale;
double yscale = m_yscale;
double xshear = m_xshear;
double yshear = m_yshear;
double rotation = m_rotation;
TQ_INT32 xtranslate = m_xtranslate;
TQ_INT32 ytranslate = m_ytranslate;
if(rotation < 0.0)
rotation = -fmod(-rotation, 2*M_PI) + 2*M_PI;
else
rotation = fmod(rotation, 2*M_PI);
int rotQuadrant = int(rotation /(M_PI/2) + 0.5) & 3;
// Figure out how we will do the initial right angle rotations
double tmp;
switch(rotQuadrant)
{
default: // just to shut up the compiler
case 0:
m_progressTotalSteps = 0;
break;
case 1:
rotation -= M_PI/2;
tmp = xscale;
xscale=yscale;
yscale=tmp;
m_progressTotalSteps = r.width() * r.height();
break;
case 2:
rotation -= M_PI;
m_progressTotalSteps = r.width() * r.height();
break;
case 3:
rotation -= -M_PI/2 + 2*M_PI;
tmp = xscale;
xscale = yscale;
yscale = tmp;
m_progressTotalSteps = r.width() * r.height();
break;
}
// Calculate some auxillary values
yshear = sin(rotation);
xshear = -tan(rotation/2);
xtranslate -= int(xshear*ytranslate);
// Calculate progress steps
m_progressTotalSteps += int(yscale * r.width() * r.height());
m_progressTotalSteps += int(xscale * r.width() * (r.height() * yscale + r.width()*yshear));
m_lastProgressReport=0;
// Now that we have everything in place it's time to do the actual right angle rotations
switch(rotQuadrant)
{
default: // just to shut up the compiler
case 0:
break;
case 1:
rotateRight90(srcdev, tmpdev1);
srcdev = tmpdev1;
break;
case 2:
rotate180(srcdev, tmpdev1);
srcdev = tmpdev1;
break;
case 3:
rotateLeft90(srcdev, tmpdev1);
srcdev = tmpdev1;
break;
}
// Handle simple move case possibly with rotation of 90,180,270
if(rotation == 0.0 && xscale == 1.0 && yscale == 1.0)
{
if(rotQuadrant==0)
{
// Though not nessesay in the general case because we make several passes
// We need to move (not just copy) the data to a temp dev so we can move them back
rotateNone(srcdev, tmpdev1);
srcdev = tmpdev1;
}
if(m_dev->hasSelection())
m_dev->selection()->clear();
srcdev->move(srcdev->getX() + xtranslate, srcdev->getY() + ytranslate);
rotateNone(srcdev, m_dev);
//progress info
emit notifyProgressDone();
m_dev->emitSelectionChanged();
return m_cancelRequested;
}
if ( m_cancelRequested) {
emit notifyProgressDone();
return false;
}
transformPass <KisHLineIteratorPixel>(srcdev, tmpdev2, xscale, yscale*xshear, 0, m_filter, m_fixBorderAlpha);
if(m_dev->hasSelection())
m_dev->selection()->clear();
if ( m_cancelRequested) {
emit notifyProgressDone();
return false;
}
// Now do the second pass
transformPass <KisVLineIteratorPixel>(tmpdev2.data(), tmpdev3.data(), yscale, yshear, ytranslate, m_filter, m_fixBorderAlpha);
if(m_dev->hasSelection())
m_dev->selection()->clear();
if ( m_cancelRequested) {
emit notifyProgressDone();
return false;
}
if (xshear != 0.0)
transformPass <KisHLineIteratorPixel>(tmpdev3, m_dev, 1.0, xshear, xtranslate, m_filter, m_fixBorderAlpha);
else
{
// No need to filter again when we are only scaling
tmpdev3->move(tmpdev3->getX() + xtranslate, tmpdev3->getY());
rotateNone(tmpdev3, m_dev);
}
if (m_dev->parentLayer()) {
m_dev->parentLayer()->setDirty();
}
//progress info
emit notifyProgressDone();
m_dev->emitSelectionChanged();
return m_cancelRequested;
}