Python bindings for TDE
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

723 lines
17 KiB

# -*- coding: ISO-8859-1 -*-
"""
Copyright 2004 Jim Bublitz (original author)
2006 Mathias Panzenböck (panzi) <grosser.meister.morti@gmx.net>
Terms and Conditions
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Except as contained in this notice, the name of the copyright holder shall
not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the
copyright holder.
"""
import re
from dcop import DCOPClient
from python_tqt.qt import TQString, TQCString, TQByteArray, TQDataStream, IO_ReadOnly, IO_WriteOnly
from tdecore import dcop_add, dcop_next
# XXX: 64 bit integers might be handeld wrong! pythons int is AFAIK 32 bit,
# but pythons long is a arbitrary-precision integer. how to handle that?
#
# I think 64 bit types would be:
# long long, unsigned long long, long long int, unsigned long long int,
# TQ_LLONG, TQ_ULLONG, TQ_INT64, TQ_UINT64
#
# and on some (most?) systems:
# TQtOffset
# add complex? complex is c99, not c++
# but python has a complex type
POD = set(['char','short','int','long','float','double'])
typedefIntTypes = set(["uchar", "ushort", "uint", "ulong",
"TQ_INT8", "Q_INT16", "TQ_INT32", "TQ_LONG",
"TQ_UINT8", "Q_UINT16", "TQ_UINT32", "Q_ULONG",
"sitze_t", "ssize_t", "int8_t", "int16_t", "int32_t",
"uint8_t", "uint16_t", "uint32_t", "pid_t", "uid_t",
"off_t"])
# XXX string and std::string too?
stringTypes = set(["TQString", "TQCString"])
pythonStringTypes = set([TQString, TQCString, str])
stringTypesDict = {"TQString":TQString,"TQCString":TQCString,"str":str,"unicode":unicode}
VOID = 0
BOOLEAN = 1 # XXX bool is not supported by dcop_add, but maybe some time...
INTEGER = 2
FLOAT = 3
STRING = 4
CLASS = 5
"""
(Most of this code is adapted from pydcop in kde-bindings, written by
Torben Weis and Julian Rockey)
The three classes below (DCOPApp, DCOPObj and DCOPMeth)
allow transparent Python calls to DCOP methods. For example:
d = DCOPApp ("kicker", dcop)
(where "kicker" is the complete name of an application and 'dcop' is
the dcopClient instance owned by the TDEApplication creating the DCOPApp
instance) creates a DCOPApp instance. All of the classes in this
file "borrow" a DCOPClient instance from the calling application.
d.objects
will return a list of the DCOP objects the application supplies.
o = d.object ("Panel")
will return a DCOPObj corresponding to applications "Panel" DCOP object.
Similarly:
o.methods
will return a list of the methods the object supplies and
m = o.method ("panelSize")
will return a DCOPMeth corresponding to Panel's panelSize() method.
The m instance also holds the methods return type, list of argument types
(argtypes) and argument names (argnames).
m.valid
is a boolean which indicates if the method encapsulated by m is a valid
method for the application/object specified.
However it isn't necessary to explicitly create the DCOPObj and DCOPMeth.
d.Panel.panelSize.valid
for example, will also indicate if the method is valid without creating the
intermediate 'o' and 'm' instances explicitly.
d = DCOPApp ("kicker", dcop)
ok, res = d.Panel.panelSize ()
is all the code necessary to perform the indicated DCOP call and return the
value the call returns. In this case, panelSize takes no arguments and
returns an int. 'ok' returns the status of the DCOP call (success = True,
failure = False).
ok = d.Panel.addURLButton (TQString ("http://www.kde.org"))
would call addURLButton with the required argument, and return nothing but the DCOP call
status(since its return type is 'void').
Note that to instantiate a DCOPObj directly, you need to have a valid DCOPApp
to pass to DCOPObj's __init__ method. Similarly, DCOPMeth requires a valid DCOPOBject.
For example:
d = DCOPApp ("kicker", dcop)
o = DCOPObj (d, "Panel")
m = DCOPMeth (o, "panelSize")
or
m = DCOPMeth (DCOPObj (DCOPApp ("kicker", dcop), "Panel"), "panelSize")
"""
# support stuff:
def _xiter(*seqences):
iters = [iter(seq) for seq in seqences]
try:
while True:
yield [it.next() for it in iters]
except StopIteration:
pass
def isStringType(s):
for stringType in pythonStringTypes:
if isinstance(s,stringType):
return True
return False
# method syntax:
# --------------
# method ::= rtype identifier( args )
# rtype ::= "void" | type
# identifier ::= [_a-zA-Z][_a-zA-Z0-9]*
# args ::= ( arg ("," arg)* )?
# arg ::= type identifier?
# type ::= namespace typespec | POD
# POD ::= ( "unsigned" | "signed" )? identifier
# namespace ::= (identifier "::")* | "::"
# typespec ::= identifier ( "<" tpyelist ">" )?
# typelist ::= (type | int) ("," (type | int) )*
# int ::= "0x" [0-9a-fA-F]+ | [0-9]+
class MethodParser(object):
ident_r = re.compile("[_a-zA-Z][_a-zA-Z0-9]*")
num_r = re.compile("0x[0-0a-fA-F]+|[0-9]+")
def __init__(self,method):
self.method = str(method)
self.rtype = None
self.name = None
self.args = []
self.parseMethod()
def __repr__(self):
return "%s(%s)" % (self.__class__.__name__, repr(self.method))
def getDecl(self):
return ''.join([self.name, '(', ','.join(argtp for (argtp, kind), argname in self.args), ')'])
def parseMethod(self):
i = self.parseRtype(self.method,0)
i, self.name = self.parseIdentifier(self.method,i)
i = self.parseArgs(self.method,i)
if i != len(self.method):
raise SyntaxError, "invalid function definition: %s" % self.method
@staticmethod
def skipws(s,i):
while s[i:i+1].isspace():
i += 1
return i
def parseArg(self,s,i):
i, tp = self.parseType(s,i)
name = self.parseIdentifier(s,i)
if name:
i, name = name
else:
name = None
return i, (tp, name)
def parseIdentifier(self,s,i):
i = MethodParser.skipws(s,i)
m = MethodParser.ident_r.match(s,i)
if m:
return m.end(), s[i:m.end()]
else:
return False
def parseInteger(self,s,i):
i = MethodParser.skipws(s,i)
m = MethodParser.num_r.match(s,i)
if m:
return m.end(), s[i:m.end()]
else:
return False
def parseArgs(self,s,i):
i = MethodParser.skipws(s,i)
if s[i:i+1] == '(':
i += 1
i = MethodParser.skipws(s,i)
while i < len(s) and s[i:i+1] != ')':
i, arg = self.parseArg(s,i)
i = MethodParser.skipws(s,i)
self.args.append(arg)
if s[i:i+1] == ',':
i += 1
else:
break
if s[i:i+1] == ')':
i += 1
else:
raise SyntaxError, "missing ')'."
else:
raise SyntaxError, "missing '('."
return i
def parseType(self,s,i):
num = self.parseNumberType(s,i)
if num:
return num
i, ns = self.parseNamespace(s,i)
i, tp = self.parseTypespec(s,i)
tp = ns + tp
if tp in stringTypes:
return i, (tp, STRING)
else:
return i, (tp, CLASS)
def parseTypespec(self,s,i):
i, tp = self.parseIdentifier(s,i)
i, tplst = self.parseTypelist(s,i)
return i, tp + tplst
def parseTypelist(self,s,i):
L = []
newi = MethodParser.skipws(s,i)
if s[newi:newi+1] == '<':
i = newi + 1
i = MethodParser.skipws(s,i)
L.append('<')
while i < len(s) and s[i:i+1] != '>':
# template-parameter can be integers!!
num = self.parseInteger(s,i)
if num:
i, tp = num
else:
i, (tp, kind) = self.parseType(s,i)
i = MethodParser.skipws(s,i)
L.append(tp)
if s[i:i+1] == ',':
i += 1
L.append(',')
else:
break
if s[i:i+1] == '>':
i += 1
L.append('>')
else:
raise SyntaxError, "missing '>'."
return i, ''.join(L)
def parseNumberType(self,s,i):
i, tp = self.parseIdentifier(s,i)
L = []
if tp == 'bool':
return i, (tp, BOOLEAN)
elif tp in typedefIntTypes:
return i, (tp, INTEGER)
elif tp in ('signed','unsigned'):
L.append(tp)
next = self.parseIdentifier(s,i)
if next and next[1] in POD:
i, tp = next
else:
# type can be fully quallyfied here!
return i, (tp, INTEGER)
if tp in POD:
L.append(tp)
else:
# else no number-type at all!
return False
# long
# long int
# long long
# long long int
# long double
# short
# short int
if tp == 'short':
# short
next = self.parseIdentifier(s,i)
if next and next[1] == 'int':
# short int
i, tp = next
L.append(tp)
elif tp == 'long':
# long
next = self.parseIdentifier(s,i)
if next:
if next[1] in ('int', 'double'):
# long int
# long double
i, tp = next
L.append(tp)
elif next[1] == 'long':
# long long
# XXX: this is 64bit! how should I handle this?
i, tp = next
L.append(tp)
next = self.parseIdentifier(s,i)
if next and next[1] == 'int':
# long long int
i, tp = next
L.append(tp)
if tp in ('float', 'double'):
return i, (' '.join(L), FLOAT)
else:
return i, (' '.join(L), INTEGER)
#
# ::
# foo::
# ::foo::
# foo::bar::
# ::foo::bar::
# ...
def parseNamespace(self,s,i):
L = []
i = MethodParser.skipws(s,i)
if s[i:i+2] == "::":
i += 2
L.append("::")
while i < len(s):
ns = self.parseIdentifier(s,i)
if not ns:
break
newi, ns = ns
newi = MethodParser.skipws(s,newi)
if s[newi:newi+2] != "::":
break
i = newi + 2
L.append( ns )
L.append( "::" )
return i, ''.join(L)
def parseRtype(self,s,i):
tp = self.parseIdentifier(s,i)
if tp and tp[1] == 'void':
i, tp = tp
self.rtype = (tp,VOID)
else:
i, self.rtype = self.parseType(s,i)
return i
def DCOPAppsIter(client):
for app in client.registeredApplications():
yield str(app)
class DCOPApp(object):
"""
An object corresponding to an application with a DCOP interface
Can return a list of the DCOP objects the application exposes,
or create and return an instance of a specific DCOP object.
"""
def __init__ (self, name, client):
self.appname = name
self.appclient = client
def __getattr__ (self, item ):
if item == "objects":
objs, ok = self.appclient.remoteObjects(self.appname)
if ok:
return objs
else:
return None
return DCOPObj(self, item)
def __iter__(self):
objs, ok = self.appclient.remoteObjects(self.appname)
if ok:
for obj in objs:
yield str(obj)
# sometimes a object-name is not a valid python identifier.
# in that case you can use dcopapp['non-valid::object/name']
def __getitem__(self,name):
return DCOPObj(self, name)
def object (self, object):
return DCOPObj (self, object)
def __repr__(self):
return '%s(%s,%s)' % (self.__class__.__name__,repr(self.appname),repr(self.appclient))
def __str__(self):
return repr(self)
class DCOPObj(object):
"""
An object corresponding to a specific DCOP object owned by a
specific application with a DCOP interface
Can return a list of the DCOP methods the object exposes,
or create and return an instance of a specific DCOP method.
"""
def __init__ (self, *args):
if isStringType(args[0]):
self.appname = args [0]
self.objclient = args [1]
self.objname = args [2]
else:
self.appname = args [0].appname
self.objname = args [1]
self.objclient = args [0].appclient
self.objmethods = self.getMethods()
def __repr__( self ):
return "%s(%s,%s)" % (self.__class__.__name__,repr(self.appname), repr(self.objname))
def __str__( self ):
return repr(self)
def __getattr__( self, item ):
if item == "methods":
return self.objmethods
return DCOPMeth(self, item)
def __getitem__(self,name):
return DCOPMeth(self, name)
def getMethods(self):
flist, ok = self.objclient.remoteFunctions(self.appname, self.objname)
if ok:
return flist
else:
return None
def __iter__(self):
flist, ok = self.objclient.remoteFunctions(self.appname, self.objname)
if ok:
for meth in flist:
yield str(meth)
def getMethodNames(self):
return [MethodParser(meth).name for meth in self.objmethods]
def getParsedMethods(self):
return [MethodParser(meth) for meth in self.objmethods]
def method(self, method):
return DCOPMeth(self, method)
class DCOPMeth(object):
"""
An object corresponding to a specific DCOP method owned by a
specific DCOP object.
"""
def __init__(self, dcopObj, name):
self.argtypes = []
self.argnames = []
self.fcnname = []
self.rtype = []
self.appname = dcopObj.appname
self.objname = dcopObj.objname
self.methname = name
self.client = dcopObj.objclient
try:
self.methods = [str(meth) for meth in dcopObj.objmethods]
except TypeError:
self.methods = []
self.valid = self.findMethod()
#
# if not self.valid:
# self.fcnname = self.rtype = self.argtypes = self.argnames = None
def __repr__( self ):
return "%s(%s,%s,%s)" % (self.__class__.__name__,repr(self.appname),repr(self.objname),repr(self.methname))
def __str__(self):
return repr(self)
def __call__(self, *args):
return self.dcop_call(args)
def __iter__(self):
return iter(self.fcnname)
def dcop_call(self, args):
# method valid?
if not self.valid:
return False, None
found = self.getMatchingMethod(args)
if found is None:
return False, None
meth, argtypes = found
ok, replyType, replyData = self.client.call(self.appname, self.objname, meth, self.__marshall(args,argtypes))
if ok:
return ok, self.__unmarshall(replyData, replyType)
else:
return ok, None
def getMatchingMethod(self,args):
count = len(args)
for funct, argtypes in _xiter(self.fcnname, self.argtypes):
if len(argtypes) == count:
match = True
for (wanttp, wantkind), have in _xiter(argtypes,args):
if wantkind == BOOLEAN:
if not isinstance(have, bool):
match = False
break
elif wantkind == INTEGER:
if not isinstance(have, int):
match = False
break
elif wantkind == FLOAT:
if not isinstance(have, float):
match = False
break
elif wantkind == STRING:
if not isStringType(have):
match = False
break
elif wanttp != have.__class__.__name__:
match = False
break
if match:
return funct, argtypes
return None
def findMethod(self):
has = False
for meth in self.methods:
fun = MethodParser(meth)
if fun.name == self.methname:
self.argtypes.append([argtp for argtp, argname in fun.args])
self.argnames.append([argname for argtp, argname in fun.args])
self.rtype.append(fun.rtype)
self.fcnname.append(fun.getDecl())
has = True
return has
def __marshall(self, args, argtypes):
data = TQByteArray()
if argtypes == []:
return data
params = TQDataStream (data, IO_WriteOnly)
for arg, (argtype, argkind) in _xiter(args, argtypes):
if argkind == BOOLEAN:
# XXX for now, let bools be handelt like int
dcop_add(params, int(arg), 'int')
elif argkind in (INTEGER, FLOAT):
dcop_add(params, arg, argtype)
elif argkind == STRING:
# convert it to the right string type:
if argtype != arg.__class__.__name__:
arg = stringTypesDict[argtype](arg)
dcop_add(params, arg)
elif argtype.startswith("TQMap") or argtype.startswith("TQValueList"):
dcop_add(params, arg, argtype)
# XXX:
# Is 'isinstance(arg, eval(argtype))' really good?
# What if 'argtype' is located in some modul? Like 'qt.TQString'.
# Then this will fail (but it should not!).
# And the worst thing: the eval() will raise a NameError!
#
# On the other hand 'arg.__class__.__name__ == argtype' has the
# disadvantage that it can't be a derived class!
#
# Would no check at all be better??
#
# But I doubt a derived class would be ok anyway. I have to check
# this in the DCOP-docu, but I think a derived class would not be
# correctly unmarshalled, because a derived class could be marshalled
# in a total different way to it's super-class.
elif arg.__class__.__name__ == argtype:
dcop_add(params, arg)
else:
raise TypeError, "expected type %s, got type %s." % (argtype, arg.__class__.__name__)
return data
def __unmarshall(self, data, type_):
s = TQDataStream(data, IO_ReadOnly)
if str(type_) in stringTypes:
return unicode(dcop_next(s, type_))
else:
return dcop_next(s, type_)