You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tdegraphics/kpovmodeler/pmpovray35serialization.cpp

1472 lines
45 KiB

/*
**************************************************************************
description
--------------------
copyright : (C) 2003 by Andreas Zehender
email : zehender@kde.org
**************************************************************************
**************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
**************************************************************************/
#include "pmpovray35serialization.h"
#include "pmoutputdevice.h"
#include "pmisosurface.h"
#include "pmlight.h"
#include "pmprojectedthrough.h"
#include "pmglobalsettings.h"
#include "pmradiosity.h"
#include "pmglobalphotons.h"
#include "pmphotons.h"
#include "pminterior.h"
#include "pmlightgroup.h"
#include "pmpattern.h"
#include "pmnormal.h"
#include "pminteriortexture.h"
#include "pmwarp.h"
#include "pmspheresweep.h"
#include "pmfinish.h"
#include "pmmesh.h"
#include "pmmedia.h"
#include "pmgraphicalobject.h"
#include "pmpigment.h"
#include "pmtexture.h"
#include "pmbicubicpatch.h"
#include "pmtriangle.h"
const PMIsoSurface::ContainedByType c_defaultIsoContainedBy = PMIsoSurface::Box;
const PMVector c_defaultIsoCorner1 = PMVector( -1, -1, -1 );
const PMVector c_defaultIsoCorner2 = PMVector( 1, 1, 1 );
const PMVector c_defaultIsoCenter = PMVector( 0, 0, 0 );
const double c_defaultIsoRadius = 1;
const double c_defaultIsoThreshold = 0.0;
const double c_defaultIsoAccuracy = 0.001;
const double c_defaultIsoMaxGradient = 1.1;
const bool c_defaultIsoEvaluate = false;
const double c_defaultIsoEvaluate0 = 5;
const double c_defaultIsoEvaluate1 = 1.2;
const double c_defaultIsoEvaluate2 = 0.95;
const double c_defaultIsoOpen = false;
const int c_defaultIsoMaxTrace = 1;
const bool c_defaultIsoAllIntersections = false;
void PMPov35SerIsoSurface( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMIsoSurface* o = ( PMIsoSurface* ) object;
TQString str;
dev->objectBegin( "isosurface" );
dev->writeName( object->name( ) );
if( o->containedBy( ) == PMIsoSurface::Box )
{
dev->writeLine( TQString( "function { " ) + o->function( ) + " }" );
if( o->corner1( ) != c_defaultIsoCorner1 ||
o->corner2( ) != c_defaultIsoCorner2 )
{
dev->writeLine( TQString( "contained_by { box { " ) +
o->corner1( ).serialize( ) + ", " +
o->corner2( ).serialize( ) + " } }" );
}
}
else
{
str.setNum( o->radius( ) );
dev->writeLine( TQString( "contained_by { sphere { " ) +
o->center( ).serialize( ) + ", " + str + " } }" );
}
if( !approx( o->threshold( ), c_defaultIsoThreshold ) )
{
str.setNum( o->threshold( ) );
dev->writeLine( "threshold " + str );
}
if( !approx( o->accuracy( ), c_defaultIsoAccuracy ) )
{
str.setNum( o->accuracy( ) );
dev->writeLine( "accuracy " + str );
}
if( !approx( o->maxGradient( ), c_defaultIsoMaxGradient ) )
{
str.setNum( o->maxGradient( ) );
dev->writeLine( "max_gradient " + str );
}
if( o->evaluate( ) )
{
str = TQString( "%1, %2, %3" ).arg( o->evaluateValue( 0 ) )
.arg( o->evaluateValue( 1 ) ).arg( o->evaluateValue( 2 ) );
dev->writeLine( "evaluate " + str );
}
if( o->allIntersections( ) )
dev->writeLine( "all_intersections" );
else
{
str.setNum( o->maxTrace( ) );
dev->writeLine( "max_trace " + str );
}
if( o->open( ) )
dev->writeLine( "open" );
dev->callSerialization( object, metaObject->superClass( ) );
dev->objectEnd( );
}
const double c_defaultLightTightness = 10;
const int c_defaultLightAdaptive = 0;
void PMPov35SerLight( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMLight* o = ( PMLight* ) object;
dev->objectBegin( TQString( "light_source" ) );
dev->writeName( object->name( ) );
dev->writeLine( o->location( ).serialize( ) + ", " + o->color( ).serialize( ) );
if( o->lightType( ) == PMLight::SpotLight )
dev->writeLine( TQString( "spotlight" ) );
else if( o->lightType( ) == PMLight::CylinderLight )
dev->writeLine( TQString( "cylinder" ) );
else if( o->lightType( ) == PMLight::ShadowlessLight )
dev->writeLine( TQString( "shadowless" ) );
if( o->parallel( ) )
dev->writeLine( TQString( "parallel" ) );
if( ( o->lightType( ) == PMLight::SpotLight ) ||
( o->lightType( ) == PMLight::CylinderLight ) )
{
dev->writeLine( TQString( "radius %1" ).arg( o->radius( ) ) );
dev->writeLine( TQString( "falloff %1" ).arg( o->falloff( ) ) );
if( o->tightness( ) != c_defaultLightTightness )
dev->writeLine( TQString( "tightness %1" ).arg( o->tightness( ) ) );
dev->writeLine( TQString( "point_at " ) + o->pointAt( ).serialize( ) );
}
if( o->isAreaLight( ) )
{
dev->writeLine( TQString( "area_light " ) + o->axis1( ).serialize( )
+ TQString( ", " ) + o->axis2( ).serialize( )
+ TQString( ", %1, %2" ).arg( o->size1( ) ).arg( o->size2( ) ) );
if( o->adaptive( ) != c_defaultLightAdaptive )
dev->writeLine( TQString( "adaptive %1" ).arg( o->adaptive( ) ) );
if( o->jitter( ) )
dev->writeLine( TQString( "jitter" ) );
if ( o->areaType( ) == PMLight::Circular )
dev->writeLine( TQString( "circular" ) );
if ( o->orient( ) )
dev->writeLine( TQString( "orient" ) );
}
if( o->fading( ) )
{
dev->writeLine( TQString( "fade_distance %1" ).arg( o->fadeDistance( ) ) );
dev->writeLine( TQString( "fade_power %1" ).arg( o->fadePower( ) ) );
}
if( !o->mediaInteraction( ) )
dev->writeLine( TQString( "media_interaction off" ) );
if( !o->mediaAttenuation( ) )
dev->writeLine( TQString( "media_attenuation off" ) );
dev->callSerialization( object, metaObject->superClass( ) );
dev->objectEnd( );
}
void PMPov35SerProjectedThrough( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
dev->objectBegin( "projected_through" );
dev->writeName( object->name( ) );
dev->callSerialization( object, metaObject->superClass( ) );
dev->objectEnd( );
}
const double c_defaultGlobalSettingsAdcBailout = 1.0 / 255.0;
const PMColor c_defaultGlobalSettingsAmbientLight = PMColor( 1.0, 1.0, 1.0, 0.0, 0.0 );
const double c_defaultGlobalSettingsAssumedGamma = 0.0;
const bool c_defaultGlobalSettingsHfGray16 = false;
const PMColor c_defaultGlobalSettingsIridWaveLength = PMColor( 0.25, 0.18, 0.14, 0.0, 0.0 );
const int c_defaultGlobalSettingsMaxIntersections = 0; // ???
const int c_defaultGlobalSettingsMaxTraceLevel = 0; // ???
const int c_defaultGlobalSettingsNumberWaves = 10;
const bool c_defaultGlobalSettingsRadiosity = false;
const double c_defaultGlobalSettingsBrightness = 1.0;
const int c_defaultGlobalSettingsCount = 35;
const double c_defaultGlobalSettingsDistanceMaximum = 0; // ???
const double c_defaultGlobalSettingsErrorBound = 1.8;
const double c_defaultGlobalSettingsGrayThreshold = 0.0;
const double c_defaultGlobalSettingsLowErrorFactor = 0.5;
const double c_defaultGlobalSettingsMinimumReuse = 0.015;
const int c_defaultGlobalSettingsNearestCount = 5;
const int c_defaultGlobalSettingsRecursionLimit = 2;
void PMPov35SerGlobalSettings( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMGlobalSettings* o = ( PMGlobalSettings* ) object;
TQString str1;
dev->objectBegin( "global_settings" );
if( o->adcBailout( ) != c_defaultGlobalSettingsAdcBailout )
{
str1.setNum( o->adcBailout( ) );
dev->writeLine( "adc_bailout " + str1 );
}
if( o->ambientLight( ) != c_defaultGlobalSettingsAmbientLight )
dev->writeLine( "ambient_light " + o->ambientLight( ).serialize( ) );
if( o->assumedGamma( ) != c_defaultGlobalSettingsAssumedGamma )
{
str1.setNum( o->assumedGamma( ) );
dev->writeLine( "assumed_gamma " + str1 );
}
if( o->hfGray16( ) != c_defaultGlobalSettingsHfGray16 )
{
if( o->hfGray16( ) )
dev->writeLine( "hf_gray_16 on" );
else
dev->writeLine( "hf_gray_16 off" );
}
if( o->iridWaveLength( ) != c_defaultGlobalSettingsIridWaveLength )
dev->writeLine( "irid_wavelength " + o->iridWaveLength( ).serialize( ) );
if( o->maxTraceLevel( ) != c_defaultGlobalSettingsMaxTraceLevel )
{
str1.setNum( o->maxTraceLevel( ) );
dev->writeLine( "max_trace_level " + str1 );
}
if( o->maxIntersections( ) != c_defaultGlobalSettingsMaxIntersections )
{
str1.setNum( o->maxIntersections( ) );
dev->writeLine( "max_intersections " + str1 );
}
if( o->numberWaves( ) != c_defaultGlobalSettingsNumberWaves )
{
str1.setNum( o->numberWaves( ) );
dev->writeLine( "number_of_waves " + str1 );
}
if ( o->noiseGenerator( ) == PMGlobalSettings::Original )
dev->writeLine( TQString( "noise_generator 1" ) );
else if ( o->noiseGenerator( ) == PMGlobalSettings::RangeCorrected )
dev->writeLine( TQString( "noise_generator 2" ) );
else
dev->writeLine( TQString( "noise_generator 3" ) );
if( o->isRadiosityEnabled( ) )
{
dev->objectBegin( "radiosity" );
if( o->brightness( ) != c_defaultGlobalSettingsBrightness )
{
str1.setNum( o->brightness( ) );
dev->writeLine( "brightness " + str1 );
}
if( o->count( ) != c_defaultGlobalSettingsCount )
{
str1.setNum( o->count( ) );
dev->writeLine( "count " + str1 );
}
if( o->distanceMaximum( ) != c_defaultGlobalSettingsDistanceMaximum )
{
str1.setNum( o->distanceMaximum( ) );
dev->writeLine( "distance_maximum " + str1 );
}
if( o->errorBound( ) != c_defaultGlobalSettingsErrorBound )
{
str1.setNum( o->errorBound( ) );
dev->writeLine( "error_bound " + str1 );
}
if( o->grayThreshold( ) != c_defaultGlobalSettingsGrayThreshold )
{
str1.setNum( o->grayThreshold( ) );
dev->writeLine( "gray_threshold " + str1 );
}
if( o->lowErrorFactor( ) != c_defaultGlobalSettingsLowErrorFactor )
{
str1.setNum( o->lowErrorFactor( ) );
dev->writeLine( "low_error_factor " + str1 );
}
if( o->minimumReuse( ) != c_defaultGlobalSettingsMinimumReuse )
{
str1.setNum( o->minimumReuse( ) );
dev->writeLine( "minimuo->reuse( ) " + str1 );
}
if( o->nearestCount( ) != c_defaultGlobalSettingsNearestCount )
{
str1.setNum( o->nearestCount( ) );
dev->writeLine( "nearest_count " + str1 );
}
if( o->recursionLimit( ) != c_defaultGlobalSettingsRecursionLimit )
{
str1.setNum( o->recursionLimit( ) );
dev->writeLine( "recursion_limit " + str1 );
}
dev->objectEnd( );
}
else
dev->callSerialization( object, metaObject->superClass( ) );
dev->objectEnd( );
}
const double c_defaultRadiosityAdcBailout = 0.01;
const double c_defaultRadiosityBrightness = 1.0;
const int c_defaultRadiosityCount = 35;
const double c_defaultRadiosityErrorBound = 1.8;
const double c_defaultRadiosityGrayThreshold = 0.0;
const double c_defaultRadiosityLowErrorFactor = 0.5;
const double c_defaultRadiosityMaxSample = -1.0;
const double c_defaultRadiosityMinimumReuse = 0.015;
const int c_defaultRadiosityNearestCount = 5;
const double c_defaultRadiosityPretraceStart = 0.08;
const double c_defaultRadiosityPretraceEnd = 0.04;
const int c_defaultRadiosityRecursionLimit = 2;
void PMPov35SerRadiosity( const PMObject* object, const PMMetaObject*, PMOutputDevice* dev )
{
PMRadiosity* o = ( PMRadiosity* ) object;
TQString str1;
dev->objectBegin( "radiosity" );
if( o->adcBailout( ) != c_defaultRadiosityAdcBailout )
{
str1.setNum( o->adcBailout( ) );
dev->writeLine( "adc_bailout " + str1 );
}
if( !o->alwaysSample( ) )
dev->writeLine( "always_sample off" );
if( o->brightness( ) != c_defaultRadiosityBrightness )
{
str1.setNum( o->brightness( ) );
dev->writeLine( "brightness " + str1 );
}
if( o->count( ) != c_defaultRadiosityCount )
{
str1.setNum( o->count( ) );
dev->writeLine( "count " + str1 );
}
if( o->errorBound( ) != c_defaultRadiosityErrorBound )
{
str1.setNum( o->errorBound( ) );
dev->writeLine( "error_bound " + str1 );
}
if( o->grayThreshold( ) != c_defaultRadiosityGrayThreshold )
{
str1.setNum( o->grayThreshold( ) );
dev->writeLine( "gray_threshold " + str1 );
}
if( o->lowErrorFactor( ) != c_defaultRadiosityLowErrorFactor )
{
str1.setNum( o->lowErrorFactor( ) );
dev->writeLine( "low_error_factor " + str1 );
}
if( o->maxSample( ) != c_defaultRadiosityMaxSample )
{
str1.setNum( o->maxSample( ) );
dev->writeLine( "max_sample " + str1 );
}
if( o->media( ) )
dev->writeLine( "media on" );
if( o->minimumReuse( ) != c_defaultRadiosityMinimumReuse )
{
str1.setNum( o->minimumReuse( ) );
dev->writeLine( "minimum_reuse " + str1 );
}
if( o->nearestCount( ) != c_defaultRadiosityNearestCount )
{
str1.setNum( o->nearestCount( ) );
dev->writeLine( "nearest_count " + str1 );
}
if( o->normal( ) )
dev->writeLine( "normal on" );
if( o->pretraceStart( ) != c_defaultRadiosityPretraceStart )
{
str1.setNum( o->pretraceStart( ) );
dev->writeLine( "pretrace_start " + str1 );
}
if( o->pretraceEnd( ) != c_defaultRadiosityPretraceEnd )
{
str1.setNum( o->pretraceEnd( ) );
dev->writeLine( "pretrace_end " + str1 );
}
if( o->recursionLimit( ) != c_defaultGlobalSettingsRecursionLimit )
{
str1.setNum( o->recursionLimit( ) );
dev->writeLine( "recursion_limit " + str1 );
}
dev->objectEnd( );
}
const int c_defaultGlobalPhotonsGatherMin = 20;
const int c_defaultGlobalPhotonsGatherMax = 100;
const int c_defaultGlobalPhotonsMediaMaxSteps = 0;
const double c_defaultGlobalPhotonsMediaFactor = 1.0;
const double c_defaultGlobalPhotonsJitter = 0.4;
const double c_defaultGlobalPhotonsAutostop = 0.0;
const double c_defaultGlobalPhotonsExpandIncrease = 0.2;
const int c_defaultGlobalPhotonsExpandMin = 40;
const double c_defaultGlobalPhotonsRadiusGather = 0.0;
const double c_defaultGlobalPhotonsRadiusGatherMulti = 1.0;
const double c_defaultGlobalPhotonsRadiusMedia = 0.0;
const double c_defaultGlobalPhotonsRadiusMediaMulti = 1.0;
void PMPov35SerGlobalPhotons( const PMObject* object, const PMMetaObject*, PMOutputDevice* dev )
{
PMGlobalPhotons* o = ( PMGlobalPhotons* ) object;
TQString str1, str2;
dev->objectBegin( "photons" );
if ( o->numberType( ) == PMGlobalPhotons::Spacing )
{
str1.setNum( o->spacing( ) );
dev->writeLine( "spacing " + str1 );
}
else
{
str1.setNum( o->count( ) );
dev->writeLine( "count " + str1 );
}
if ( o->gatherMin( ) != c_defaultGlobalPhotonsGatherMin ||
o->gatherMax( ) != c_defaultGlobalPhotonsGatherMax )
{
str1.setNum( o->gatherMin( ) );
str2.setNum( o->gatherMax( ) );
dev->writeLine( "gather " + str1 + ", " + str2 );
}
if ( o->mediaMaxSteps( ) != c_defaultGlobalPhotonsMediaMaxSteps )
{
str1.setNum( o->mediaMaxSteps( ) );
if ( o->mediaFactor( ) != c_defaultGlobalPhotonsMediaFactor )
{
str2.setNum( o->mediaFactor( ) );
dev->writeLine( "media " + str1 + ", " + str2 );
}
else
dev->writeLine( "media " + str1 );
}
if ( o->jitter( ) != c_defaultGlobalPhotonsJitter )
{
str1.setNum( o->jitter( ) );
dev->writeLine( "jitter " + str1 );
}
if ( !o->maxTraceLevelGlobal( ) )
{
str1.setNum( o->maxTraceLevel( ) );
dev->writeLine( "max_trace_level " + str1 );
}
if ( !o->adcBailoutGlobal( ) )
{
str1.setNum( o->adcBailout( ) );
dev->writeLine( "adc_bailout " + str1 );
}
if ( o->autostop( ) != c_defaultGlobalPhotonsAutostop )
{
str1.setNum( o->autostop( ) );
dev->writeLine( "autostop " + str1 );
}
if ( o->expandIncrease( ) != c_defaultGlobalPhotonsExpandIncrease ||
o->expandMin( ) != c_defaultGlobalPhotonsExpandMin )
{
str1.setNum( o->expandIncrease( ) );
str2.setNum( o->expandMin( ) );
dev->writeLine( "expand_thresholds " + str1 + ", " + str2 );
}
if ( o->radiusGather( ) != c_defaultGlobalPhotonsRadiusGather ||
o->radiusGatherMulti( ) != c_defaultGlobalPhotonsRadiusGatherMulti ||
o->radiusMedia( ) != c_defaultGlobalPhotonsRadiusMedia ||
o->radiusMediaMulti( ) != c_defaultGlobalPhotonsRadiusMediaMulti )
{
TQString str3, str4;
str1.setNum( o->radiusGather( ) );
str2.setNum( o->radiusGatherMulti( ) );
str3.setNum( o->radiusMedia( ) );
str4.setNum( o->radiusMediaMulti( ) );
dev->writeLine( "radius " + str1 + ", " + str2 + ", " + str3 + ", " + str4 );
}
dev->objectEnd( );
}
const double c_defaultPhotonsSpacingMulti = 1.0;
void PMPov35SerPhotons( const PMObject* object, const PMMetaObject*, PMOutputDevice* dev )
{
PMPhotons* o = ( PMPhotons* ) object;
TQString str1;
dev->objectBegin( "photons" );
if( o->parent( ) && ( o->parent( )->type( ) == "Light" ) )
{
if( o->refraction( ) )
dev->writeLine( TQString( "refraction on" ) );
if( o->reflection( ) )
dev->writeLine( TQString( "reflection on" ) );
if( o->areaLight( ) )
dev->writeLine( TQString( "area_light" ) );
}
else
{
if( o->target( ) )
{
if( o->spacingMulti( ) != c_defaultPhotonsSpacingMulti )
{
str1.setNum( o->spacingMulti( ) );
dev->writeLine( "target " + str1 );
}
else
dev->writeLine( TQString( "target" ) );
}
if( o->refraction( ) )
dev->writeLine( TQString( "refraction on" ) );
if( o->reflection( ) )
dev->writeLine( TQString( "reflection on" ) );
if( !o->collect( ) )
dev->writeLine( TQString( "collect off" ) );
if( o->passThrough( ) )
dev->writeLine( TQString( "pass_through" ) );
}
dev->objectEnd( );
}
void PMPov35SerInterior( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMInterior* o = ( PMInterior* ) object;
TQString str1;
dev->objectBegin( "interior" );
dev->callSerialization( object, metaObject->superClass( ) );
if( o->isIorEnabled( ) )
{
str1.setNum( o->ior( ) );
dev->writeLine( "ior " + str1 );
}
if( o->isCausticsEnabled( ) )
{
str1.setNum( o->caustics( ) );
dev->writeLine( "caustics " + str1 );
}
if ( o->isDispersionEnabled( ) )
{
str1.setNum( o->dispersion( ) );
dev->writeLine( "dispersion " + str1 );
}
if ( o->isDispSamplesEnabled( ) )
{
str1.setNum( o->dispSamples( ) );
dev->writeLine( "dispersion_samples " + str1 );
}
if( o->isFadeDistanceEnabled( ) )
{
str1.setNum( o->fadeDistance( ) );
dev->writeLine( "fade_distance " + str1 );
}
if( o->isFadePowerEnabled( ) )
{
str1.setNum( o->fadePower( ) );
dev->writeLine( "fade_power " + str1 );
}
dev->objectEnd( );
}
void PMPov35SerLightGroup( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMLightGroup* o = ( PMLightGroup* ) object;
dev->objectBegin( "light_group" );
dev->writeName( object->name( ) );
dev->callSerialization( object, metaObject->superClass( ) );
if ( o->globalLights( ) )
dev->writeLine( "global_lights on" );
else
dev->writeLine( "global_lights off" );
dev->objectEnd( );
}
const PMVector c_defaultPatternCrackleForm = PMVector( -1.0, 1.0, 0.0 );
const int c_defaultPatternCrackleMetric = 2;
const double c_defaultPatternCrackleOffset = 0.0;
const bool c_defaultPatternCrackleSolid = false;
const int c_defaultPatternFractalExponent = 2;
const int c_defaultPatternFractalExtType = 1;
const double c_defaultPatternFractalExtFactor = 1.0;
const int c_defaultPatternFractalIntType = 0;
const double c_defaultPatternFractalIntFactor = 1.0;
const double c_defaultPatternSlopeLoSlope = 0.0;
const double c_defaultPatternSlopeHiSlope = 1.0;
const double c_defaultPatternSlopeLoAlt = 0.0;
const double c_defaultPatternSlopeHiAlt = 1.0;
const int c_defaultPatternOctaves = 6;
const double c_defaultPatternOmega = 0.5;
const double c_defaultPatternLambda = 2.0;
void PMPov35SerPattern( const PMObject* object, const PMMetaObject*, PMOutputDevice* dev )
{
PMPattern* o = ( PMPattern* ) object;
TQString str, str2;
// pattern type
switch( o->patternType( ) )
{
case PMPattern::PatternAgate:
dev->writeLine( "agate" );
break;
case PMPattern::PatternAverage:
dev->writeLine( "average" );
break;
case PMPattern::PatternBoxed:
dev->writeLine( "boxed" );
break;
case PMPattern::PatternBozo:
dev->writeLine( "bozo" );
break;
case PMPattern::PatternBumps:
dev->writeLine( "bumps" );
break;
case PMPattern::PatternCells:
dev->writeLine( "cells" );
break;
case PMPattern::PatternCrackle:
dev->writeLine( "crackle" );
break;
case PMPattern::PatternCylindrical:
dev->writeLine( "cylindrical" );
break;
case PMPattern::PatternDensity:
dev->writeLine( "density_file df3 \"" + o->densityFile( ) + "\"");
break;
case PMPattern::PatternDents:
dev->writeLine( "dents" );
break;
case PMPattern::PatternGradient:
dev->writeLine( "gradient " + o->gradient( ).serialize( ) );
break;
case PMPattern::PatternGranite:
dev->writeLine( "granite" );
break;
case PMPattern::PatternJulia:
if( o->fractalMagnet( ) )
{
str.setNum( o->fractalMagnetType( ) );
str = "magnet " + str + " ";
}
else
str = "";
str2.setNum( o->maxIterations( ) );
str = str + "julia " + o->juliaComplex( ).serialize( ) + ", " + str2;
dev->writeLine( str );
break;
case PMPattern::PatternLeopard:
dev->writeLine( "leopard" );
break;
case PMPattern::PatternMandel:
if( o->fractalMagnet( ) )
{
str.setNum( o->fractalMagnetType( ) );
str = "magnet " + str + " ";
}
else
str = "";
str2.setNum( o->maxIterations( ) );
dev->writeLine( str + "mandel " + str2 );
break;
case PMPattern::PatternMarble:
dev->writeLine( "marble" );
break;
case PMPattern::PatternOnion:
dev->writeLine( "onion" );
break;
case PMPattern::PatternPlanar:
dev->writeLine( "planar" );
break;
case PMPattern::PatternQuilted:
dev->writeLine( "quilted" );
break;
case PMPattern::PatternRadial:
dev->writeLine( "radial" );
break;
case PMPattern::PatternRipples:
dev->writeLine( "ripples" );
break;
case PMPattern::PatternSlope:
dev->objectBegin( "slope" );
dev->write( o->slopeDirection( ).serialize( ) );
if ( o->slopeLoSlope( ) != c_defaultPatternSlopeLoSlope ||
o->slopeHiSlope( ) != c_defaultPatternSlopeHiSlope )
{
str.setNum( o->slopeLoSlope( ) );
str2.setNum( o->slopeHiSlope( ) );
dev->writeLine( ", " + str + ", " + str2 );
}
else
dev->writeLine( "" );
if ( o->slopeAltFlag( ) )
{
dev->write( "altitude " + o->slopeAltitude( ).serialize( ) );
if ( o->slopeLoAltitude( ) != c_defaultPatternSlopeLoAlt ||
o->slopeHiAltitude( ) != c_defaultPatternSlopeHiAlt )
{
str.setNum( o->slopeLoAltitude( ) );
str2.setNum( o->slopeHiAltitude( ) );
dev->writeLine( ", " + str + ", " + str2 );
}
else
dev->writeLine( "" );
}
dev->objectEnd( );
break;
case PMPattern::PatternSpherical:
dev->writeLine( "spherical" );
break;
case PMPattern::PatternSpiral1:
str.setNum( o->spiralNumberArms( ) );
dev->writeLine( "spiral1 " + str );
break;
case PMPattern::PatternSpiral2:
str.setNum( o->spiralNumberArms( ) );
dev->writeLine( "spiral2 " + str );
break;
case PMPattern::PatternSpotted:
dev->writeLine( "spotted" );
break;
case PMPattern::PatternWaves:
dev->writeLine( "waves" );
break;
case PMPattern::PatternWood:
dev->writeLine( "wood" );
break;
case PMPattern::PatternWrinkles:
dev->writeLine( "wrinkles" );
break;
}
// depth
if( o->parent( ) )
{
if( o->depth( ) && o->parent( )->type( ) == "Normal" )
{
str.setNum( o->depth( ) );
dev->writeLine( str );
}
}
// modifiers
switch( o->patternType( ) )
{
case PMPattern::PatternAgate:
str.setNum( o->agateTurbulence( ) );
dev->writeLine( "agate_turb " + str );
break;
case PMPattern::PatternCrackle:
if ( o->crackleForm( ) != c_defaultPatternCrackleForm )
dev->writeLine( "form " + o->crackleForm( ).serialize( ) );
if ( o->crackleMetric( ) != c_defaultPatternCrackleMetric )
{
str.setNum( o->crackleMetric( ) );
dev->writeLine( "metric " + str );
}
if ( o->crackleOffset( ) != c_defaultPatternCrackleOffset )
{
str.setNum( o->crackleOffset( ) );
dev->writeLine( "offset " + str );
}
if ( o->crackleSolid( ) )
dev->writeLine( "solid" );
break;
case PMPattern::PatternDensity:
str.setNum( o->densityInterpolate( ) );
dev->writeLine( "interpolate " + str );
break;
case PMPattern::PatternJulia:
case PMPattern::PatternMandel:
if ( !o->fractalMagnet( ) && o->fractalExponent( ) != c_defaultPatternFractalExponent )
{
str.setNum( o->fractalExponent( ) );
dev->writeLine( "exponent " + str );
}
if ( o->fractalExtType( ) != c_defaultPatternFractalExtType ||
o->fractalExtFactor( ) != c_defaultPatternFractalExtFactor )
{
str.setNum( o->fractalExtType( ) );
str2.setNum( o->fractalExtFactor( ) );
dev->writeLine( "exterior " + str + ", " + str2 );
}
if ( o->fractalIntType( ) != c_defaultPatternFractalIntType ||
o->fractalIntFactor( ) != c_defaultPatternFractalIntFactor )
{
str.setNum( o->fractalIntType( ) );
str2.setNum( o->fractalIntFactor( ) );
dev->writeLine( "interior " + str + ", " + str2 );
}
break;
case PMPattern::PatternQuilted:
str.setNum( o->quiltControl0( ) );
dev->writeLine( "control0 " + str );
str.setNum( o->quiltControl1( ) );
dev->writeLine( "control1 " + str );
break;
case PMPattern::PatternBozo:
case PMPattern::PatternBumps:
case PMPattern::PatternGranite:
case PMPattern::PatternWrinkles:
switch( o->noiseGenerator( ) )
{
case PMPattern::Original:
dev->writeLine( TQString( "noise_generator 1" ) );
break;
case PMPattern::RangeCorrected:
dev->writeLine( TQString( "noise_generator 2" ) );
break;
case PMPattern::Perlin:
dev->writeLine( TQString( "noise_generator 3" ) );
break;
default:
break;
}
break;
default:
break;
}
if( o->isTurbulenceEnabled( ) )
{
dev->writeLine( "turbulence " + o->valueVector( ).serialize( ) );
if( o->octaves( ) != c_defaultPatternOctaves )
{
str.setNum( o->octaves( ) );
dev->writeLine( "octaves " + str );
}
if( o->omega( ) != c_defaultPatternOmega )
{
str.setNum( o->omega( ) );
dev->writeLine( "omega " + str );
}
if( o->lambda( ) != c_defaultPatternLambda )
{
str.setNum( o->lambda( ) );
dev->writeLine( "lambda " + str );
}
}
}
const double c_defaultNormalAccuracy = 0.02;
void PMPov35SerNormal( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMNormal* o = ( PMNormal* ) object;
TQString str1;
bool bObject = true;
if( o->parent( ) )
{
if( o->parent( )->type( ) == "NormalMap" )
bObject = false;
}
if( bObject )
{
dev->objectBegin( "normal" );
if ( o->uvMapping() )
dev->writeLine( "uv_mapping" );
}
dev->callSerialization( object, metaObject->superClass( ) );
if( o->isBumpSizeEnabled( ) )
{
str1.setNum( o->bumpSize( ) );
dev->writeLine( "bump_size " + str1 );
}
if( o->accuracy( ) != c_defaultNormalAccuracy )
{
str1.setNum( o->accuracy( ) );
dev->writeLine( "accuracy " + str1 );
}
if( bObject )
dev->objectEnd( );
}
void PMPov35SerInteriorTexture( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
dev->objectBegin( "interior_texture" );
dev->callSerialization( object, metaObject->superClass( ) );
dev->objectEnd( );
}
const PMVector c_warpDirectionDefault = PMVector( 1.0, 0.0, 0.0 );
const PMVector c_warpOffsetDefault = PMVector( 0.0, 0.0, 0.0 );
const PMVector c_warpFlipDefault = PMVector( 0.0, 0.0, 0.0 );
const PMVector c_warpLocationDefault = PMVector( 0.0, 0.0, 0.0 );
const double c_warpRadiusDefault = 0;
const double c_warpStrengthDefault = 0;
const double c_warpFalloffDefault = 0;
const bool c_warpInverseDefault = false;
const PMVector c_warpRepeatDefault = PMVector( 0.0, 0.0, 0.0 );
const PMVector c_warpTurbulenceDefault = PMVector( 0.0, 0.0, 0.0 );
const PMVector c_warpValueVectorDefault = PMVector( 0.0, 0.0, 0.0 );
const int c_warpOctavesDefault = 6;
const double c_warpOmegaDefault = 0.5;
const double c_warpLambdaDefault = 2.0;
const PMVector c_warpOrientationDefault = PMVector( 0.0, 0.0, 1.0 );
const double c_warpDistExpDefault = 0.0;
const double c_warpMajorRadiusDefault = 1.0;
void PMPov35SerWarp( const PMObject* object, const PMMetaObject* , PMOutputDevice* dev )
{
PMWarp* o = ( PMWarp* ) object;
TQString str1, str2;
dev->objectBegin( "warp" );
switch( o->warpType( ) )
{
case PMWarp::Repeat:
dev->writeLine( "repeat" );
dev->writeLine( o->direction( ).serialize( ) );
dev->writeLine( "offset " + o->offset( ).serialize( ) );
dev->writeLine( "flip " + o->flip( ).serialize( ) );
break;
case PMWarp::BlackHole:
dev->writeLine( "black_hole" );
dev->writeLine( o->location( ).serialize( ) );
str1.setNum(o->radius( ));
dev->writeLine( ", " + str1 );
if( o->strength( ) != c_warpStrengthDefault )
{
str1.setNum( o->strength( ));
dev->writeLine( "strength " + str1 );
}
if( o->falloff( ) != c_warpFalloffDefault )
{
str1.setNum( o->falloff( ));
dev->writeLine( "falloff " + str1 );
}
if( o->inverse( ) != c_warpInverseDefault )
{
if( o->inverse( ) ) dev->writeLine( "inverse" );
}
if( o->repeat( ) != c_warpRepeatDefault )
{
dev->writeLine( "repeat " + o->repeat( ).serialize( ) );
}
if( o->turbulence( ) != c_warpTurbulenceDefault )
{
dev->writeLine( "turbulence " + o->turbulence( ).serialize( ) );
}
break;
case PMWarp::Turbulence:
dev->writeLine( "turbulence " + o->valueVector( ).serialize( ) );
if( o->octaves( ) != c_warpOctavesDefault )
{
str1.setNum(o->octaves( ));
dev->writeLine( "octaves " + str1 );
}
if( o->omega( ) != c_warpOmegaDefault )
{
str1.setNum( o->omega( ) );
dev->writeLine( "omega " + str1 );
}
if( o->lambda( ) != c_warpLambdaDefault )
{
str1.setNum( o->lambda( ) );
dev->writeLine( "lambda " + str1 );
}
break;
case PMWarp::Cylindrical:
dev->writeLine( "cylindrical " + o->orientation( ).serialize( ) );
if ( o->distExp( ) != c_warpDistExpDefault )
{
str1.setNum( o->distExp( ) );
dev->writeLine( "dist_exp " + str1 );
}
break;
case PMWarp::Spherical:
dev->writeLine( "spherical " + o->orientation( ).serialize( ) );
if ( o->distExp( ) != c_warpDistExpDefault )
{
str1.setNum( o->distExp( ) );
dev->writeLine( "dist_exp " + str1 );
}
break;
case PMWarp::Toroidal:
dev->writeLine( "torodial " + o->orientation( ).serialize( ) );
if ( o->distExp( ) != c_warpDistExpDefault )
{
str1.setNum( o->distExp( ) );
dev->writeLine( "dist_exp " + str1 );
}
if ( o->majorRadius( ) != c_warpMajorRadiusDefault )
{
str1.setNum( o->majorRadius( ) );
dev->writeLine( "major_radius " + str1 );
}
break;
case PMWarp::Planar:
str1 = "planar " + o->orientation( ).serialize( );
if ( o->distExp( ) != c_warpDistExpDefault )
{
str2.setNum( o->distExp( ) );
dev->writeLine( str1 + ", " + str2 );
}
else
dev->writeLine( str1 );
break;
}
dev->objectEnd( );
}
const double c_sphereSweepToleranceDefault = 1e-6;
void PMPov35SerSphereSweep( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMSphereSweep* o = ( PMSphereSweep* ) object;
TQString str1;
int numSpheres;
TQValueList<PMVector> points;
TQValueList<double> radii;
dev->objectBegin( "sphere_sweep" );
switch( o->splineType( ) )
{
case PMSphereSweep::LinearSpline:
dev->writeLine( TQString( "linear_spline," ) );
break;
case PMSphereSweep::BSpline:
dev->writeLine( TQString( "b_spline," ) );
break;
case PMSphereSweep::CubicSpline:
dev->writeLine( TQString( "cubic_spline," ) );
break;
}
numSpheres = o->numberOfPoints( );
str1.setNum( numSpheres );
dev->writeLine( str1 + "," );
points = o->points( );
radii = o->radii( );
for ( int i = 0; i < numSpheres; ++i )
{
str1.setNum( radii[i] );
dev->writeLine( points[i].serialize( ) + "," + str1 );
}
if ( o->tolerance( ) != c_sphereSweepToleranceDefault )
{
str1.setNum( o->tolerance( ) );
dev->writeLine( "tolerance " + str1 );
}
dev->callSerialization( object, metaObject->superClass( ) );
dev->objectEnd( );
}
void PMPov35SerFinish( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMFinish* o = ( PMFinish* ) object;
TQString str1;
dev->objectBegin( "finish" );
dev->callSerialization( object, metaObject->superClass( ) );
if( o->isAmbientEnabled( ) )
dev->writeLine( "ambient " + o->ambientColor( ).serialize( ) );
if( o->isDiffuseEnabled( ) )
{
str1.setNum( o->diffuse( ) );
dev->writeLine( "diffuse " + str1 );
}
if( o->isBrillianceEnabled( ) )
{
str1.setNum( o->brilliance( ) );
dev->writeLine( "brilliance " + str1 );
}
if( o->isPhongEnabled( ) )
{
str1.setNum( o->phong( ) );
dev->writeLine( "phong " + str1 );
}
if( o->isPhongSizeEnabled( ) )
{
str1.setNum( o->phongSize( ) );
dev->writeLine( "phong_size " + str1 );
}
if( o->isMetallicEnabled( ) )
{
str1.setNum( o->metallic( ) );
dev->writeLine( "metallic " + str1 );
}
if( o->isSpecularEnabled( ) )
{
str1.setNum( o->specular( ) );
dev->writeLine( "specular " + str1 );
}
if( o->isRoughnessEnabled( ) )
{
str1.setNum( o->roughness( ) );
dev->writeLine( "roughness " + str1 );
}
if( o->isCrandEnabled( ) )
{
str1.setNum( o->crand( ) );
dev->writeLine( "crand " + str1 );
}
if( o->conserveEnergy( ) )
dev->writeLine( "conserve_energy" );
if( o->irid( ) )
{
str1.setNum( o->iridAmount( ) );
dev->writeLine( "irid { " + str1 );
str1.setNum( o->iridThickness( ) );
dev->writeLine( "thickness " + str1 );
str1.setNum( o->iridTurbulence( ) );
dev->writeLine( "turbulence " + str1 + " } " );
}
if( o->isReflectionEnabled( ) )
{
dev->objectBegin( "reflection" );
if ( o->isReflectionMinEnabled( ) )
{
dev->writeLine( o->reflectionMinColor( ).serialize( ) + ", " +
o->reflectionColor( ).serialize( ) );
}
else
dev->writeLine( o->reflectionColor( ).serialize( ) );
if ( o->reflectionFresnel( ) )
dev->writeLine( "fresnel" );
if ( o->isRefFalloffEnabled( ) )
{
str1.setNum( o->reflectionFalloff( ) );
dev->writeLine( "falloff " + str1 );
}
if ( o->isRefExponentEnabled( ) )
{
str1.setNum( o->reflectionExponent( ) );
dev->writeLine( "exponent " + str1 );
}
if ( o->isRefMetallicEnabled( ) )
{
str1.setNum( o->reflectionMetallic( ) );
dev->writeLine( "metallic " + str1 );
}
dev->objectEnd( );
}
dev->objectEnd( );
}
void PMPov35SerMesh( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMMesh* o = ( PMMesh* ) object;
dev->objectBegin( "mesh" );
if( o->isInsideVectorEnabled( ) )
dev->writeLine( "inside_vector " + o->insideVector( ).serialize( ) );
dev->callSerialization( object, metaObject->superClass( ) );
if( !o->hierarchy( ) )
dev->writeLine( "hierarchy off" );
dev->objectEnd( );
}
const int c_defaultMediaMethod = 1;
const int c_defaultMediaIntervals = 10;
const int c_defaultMediaSamplesMin = 1;
const int c_defaultMediaSamplesMax = 1;
const double c_defaultMediaConfidence = 0.9;
const double c_defaultMediaVariance = 0.0078125;
const double c_defaultMediaRatio = 0.9;
const int c_defaultMediaAALevel = 4;
const double c_defaultMediaAAThreshold = 0.1;
const double c_defaultMediaScatteringEccentricity = 0;
const double c_defaultMediaScatteringExtinction = 1.0;
void PMPov35SerMedia( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMMedia* o = ( PMMedia* ) object;
TQString str1;
TQString str2;
dev->objectBegin( "media" );
dev->callSerialization( object, metaObject->superClass( ) );
if( o->method( ) != c_defaultMediaMethod )
{
str1.setNum( o->method( ) );
dev->writeLine( "method " + str1 );
}
if( o->intervals( ) != c_defaultMediaIntervals )
{
str1.setNum( o->intervals( ) );
dev->writeLine( "intervals " + str1 );
}
if( o->samplesMin( ) != c_defaultMediaSamplesMin ||
o->samplesMax( ) != c_defaultMediaSamplesMax )
{
str1.setNum( o->samplesMin( ) );
str2.setNum( o->samplesMax( ) );
if ( o->method( ) < 3 )
dev->writeLine( "samples " + str1 + "," + str2 );
else
dev->writeLine( "samples " + str1 );
}
if( o->confidence( ) != c_defaultMediaConfidence )
{
str1.setNum( o->confidence( ) );
dev->writeLine( "confidence " + str1 );
}
if( o->variance( ) != c_defaultMediaVariance )
{
str1.setNum( o->variance( ) );
dev->writeLine( "variance " + str1 );
}
if( o->ratio( ) != c_defaultMediaRatio )
{
str1.setNum( o->ratio( ) );
dev->writeLine( "ratio " + str1 );
}
if ( o->method( ) == 3 )
{
if ( o->aaLevel( ) != c_defaultMediaAALevel )
{
str1.setNum( o->aaLevel( ) );
dev->writeLine( "aa_level " + str1 );
}
if ( o->aaThreshold( ) != c_defaultMediaAAThreshold )
{
str1.setNum( o->aaThreshold( ) );
dev->writeLine( "aa_threshold " + str1 );
}
}
if( o->isAbsorptionEnabled( ) )
{
dev->writeLine( "absorption " + o->absorption( ).serialize( ) );
}
if( o->isEmissionEnabled( ) )
{
dev->writeLine( "emission " + o->emission( ).serialize( ) );
}
if( o->isScatteringEnabled( ) )
{
dev->objectBegin( "scattering" );
str1.setNum( o->scatteringType( ) );
dev->writeLine( str1 + ", " + o->scatteringColor( ).serialize( ) );
if( o->scatteringType( ) == 5 && o->scatteringEccentricity( )
!= c_defaultMediaScatteringEccentricity )
{
str1.setNum( o->scatteringEccentricity( ) );
dev->writeLine( "eccentricity " + str1 );
}
if( o->scatteringExtinction( ) != c_defaultMediaScatteringExtinction )
{
str1.setNum( o->scatteringExtinction( ) );
dev->writeLine( "extinction " + str1 );
}
dev->objectEnd( );
}
dev->objectEnd( );
}
void PMPov35SerGraphicalObject( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMGraphicalObject* o = ( PMGraphicalObject* ) object;
dev->callSerialization( object, metaObject->superClass( ) );
if( o->noShadow( ) )
dev->writeLine( "no_shadow" );
if( o->noImage( ) )
dev->writeLine( "no_image" );
if( o->noReflection( ) )
dev->writeLine( "no_reflection" );
if( o->doubleIlluminate( ) )
dev->writeLine( "double_illuminate" );
}
void PMPov35SerPigment( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMPigment* o = ( PMPigment* ) object;
bool bObject = true;
if( o->parent( ) )
if( o->parent( )->type( ) == "PigmentMap" )
bObject = false;
if( bObject )
{
dev->objectBegin( "pigment" );
if ( o->uvMapping() )
dev->writeLine( "uv_mapping" );
}
dev->callSerialization( object, metaObject->superClass( ) );
if( bObject )
dev->objectEnd( );
}
void PMPov35SerTexture( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMTexture* o = ( PMTexture* ) object;
bool bObject = true;
if( o->parent( ) )
if( o->parent( )->type( ) == "TextureMap" )
bObject = false;
if( bObject )
{
dev->objectBegin( "texture" );
if ( o->uvMapping() )
dev->writeLine( "uv_mapping" );
}
dev->callSerialization( object, metaObject->superClass( ) );
if( bObject )
dev->objectEnd( );
}
const double c_defaultPatchFlatness = 0;
void PMPov35SerBicubicPatch( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMBicubicPatch* o = ( PMBicubicPatch* ) object;
int u, v;
TQString str, line;
dev->objectBegin( "bicubic_patch" );
dev->writeName( object->name( ) );
str.setNum( o->patchType( ) );
dev->writeLine( "type " + str );
if( !approx( o->flatness( ), c_defaultPatchFlatness ) )
{
str.setNum( o->flatness( ) );
dev->writeLine( "flatness " + str );
}
str.setNum( o->uSteps( ) );
dev->writeLine( "u_steps " + str );
str.setNum( o->vSteps( ) );
dev->writeLine( "v_steps " + str );
if( o->isUVEnabled( ) )
{
dev->writeLine( "uv_vectors " + o->uvVector( 0 ).serialize( ) +
" " + o->uvVector( 1 ).serialize( ) +
" " + o->uvVector( 2 ).serialize( ) +
" " + o->uvVector( 3 ).serialize( ) );
}
for( v = 0; v < 4; v++ )
{
line = o->controlPoint( v*4 ).serialize( );
for( u = 1; u < 4; u++ )
line += TQString( ", " ) + o->controlPoint( u+4*v ).serialize( );
if( v != 3 )
line += ",";
dev->writeLine( line );
}
dev->callSerialization( object, metaObject->superClass( ) );
dev->objectEnd( );
}
void PMPov35SerTriangle( const PMObject* object, const PMMetaObject* metaObject, PMOutputDevice* dev )
{
PMTriangle* o = ( PMTriangle* ) object;
if( o->isSmoothTriangle( ) )
{
dev->objectBegin( "smooth_triangle" );
dev->writeName( object->name( ) );
dev->writeLine( o->point( 0 ).serialize( ) + ", " + o->normal( 0 ).serialize( ) + "," );
dev->writeLine( o->point( 1 ).serialize( ) + ", " + o->normal( 1 ).serialize( ) + "," );
dev->writeLine( o->point( 2 ).serialize( ) + ", " + o->normal( 2 ).serialize( ) );
}
else
{
dev->objectBegin( "triangle" );
dev->writeName( object->name( ) );
dev->writeLine( o->point( 0 ).serialize( ) + ", " + o->point( 1 ).serialize( )
+ ", " + o->point( 2 ).serialize( ) );
}
if( o->isUVEnabled( ) )
{
dev->writeLine( "uv_vectors " + o->uvVector( 0 ).serialize( ) +
" " + o->uvVector( 1 ).serialize( ) +
" " + o->uvVector( 2 ).serialize( ) );
}
dev->callSerialization( object, metaObject->superClass( ) );
dev->objectEnd( );
}